Skew normal distribution

Skew Normal
Probability density function
Probability density plots of skew normal distributions
Cumulative distribution function
Cumulative distribution function plots of skew normal distributions
Parameters location (real)
scale (positive, real)
shape (real)
Support
PDF
CDF
is Owen's T function
Mean where
Mode
Variance
Skewness
Excess kurtosis
MGF
CF

In probability theory and statistics, the skew normal distribution is a continuous probability distribution that generalises the normal distribution to allow for non-zero skewness.

Definition

Let denote the standard normal probability density function

with the cumulative distribution function given by

where "erf" is the error function. Then the probability density function (pdf) of the skew-normal distribution with parameter is given by

This distribution was first introduced by O'Hagan and Leonard (1976).[1] Alternative forms to this distribution, with the corresponding quantile function, have been given by Ashour and Abdel-Hamid[2] and by Mudholkar and Hutson.[3]

A stochastic process that underpins the distribution was described by Andel, Netuka and Zvara (1984).[4] Both the distribution and its stochastic process underpinnings were consequences of the symmetry argument developed in Chan and Tong (1986),[5] which applies to multivariate cases beyond normality, e.g. skew multivariate t distribution and others. The distribution is a particular case of a general class of distributions with probability density functions of the form where is any PDF symmetric about zero and is any CDF whose PDF is symmetric about zero.[6]

To add location and scale parameters to this, one makes the usual transform . One can verify that the normal distribution is recovered when , and that the absolute value of the skewness increases as the absolute value of increases. The distribution is right skewed if and is left skewed if . The probability density function with location , scale , and parameter becomes

The skewness () of the distribution is limited to slightly less than the interval (see Estimation).

As has been shown,[7] the mode (maximum) of the distribution is unique. For general there is no analytic expression for , but a quite accurate (numerical) approximation is:

Estimation

Maximum likelihood estimates for , , and can be computed numerically, but no closed-form expression for the estimates is available unless . In contrast, the method of moments has a closed-form expression since the skewness equation can be inverted with

where and the sign of is the same as the sign of . Consequently, , , and where and are the mean and standard deviation. As long as the sample skewness is not too large, these formulas provide method of moments estimates , , and based on a sample's , , and .

The maximum (theoretical) skewness is obtained by setting in the skewness equation, giving . However it is possible that the sample skewness is larger, and then cannot be determined from these equations. When using the method of moments in an automatic fashion, for example to give starting values for maximum likelihood iteration, one should therefore let (for example) .

Concern has been expressed about the impact of skew normal methods on the reliability of inferences based upon them.[8]

The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive . Thus, in terms of the seven states of randomness, it shows "proper mild randomness". In contrast, the exponentially modified normal has an exponential tail in the direction of the skew; its density is asymptotically proportional to . In the same terms, it shows "borderline mild randomness".

Thus, the skew normal is useful for modeling skewed distributions which nevertheless have no more outliers than the normal, while the exponentially modified normal is useful for cases with an increased incidence of outliers in (just) one direction.

See also

References

  1. ^ O'Hagan, A.; Leonard, Tom (1976). "Bayes estimation subject to uncertainty about parameter constraints". Biometrika. 63 (1): 201–203. doi:10.1093/biomet/63.1.201. ISSN 0006-3444.
  2. ^ Ashour, Samir K.; Abdel-hameed, Mahmood A. (October 2010). "Approximate skew normal distribution". Journal of Advanced Research. 1 (4): 341–350. doi:10.1016/j.jare.2010.06.004. ISSN 2090-1232.
  3. ^ Mudholkar, Govind S.; Hutson, Alan D. (February 2000). "The epsilon–skew–normal distribution for analyzing near-normal data". Journal of Statistical Planning and Inference. 83 (2): 291–309. doi:10.1016/s0378-3758(99)00096-8. ISSN 0378-3758.
  4. ^ Andel, J., Netuka, I. and Zvara, K. (1984) On threshold autoregressive processes. Kybernetika, 20, 89-106
  5. ^ Chan, K. S.; Tong, H. (March 1986). "A note on certain integral equations associated with non-linear time series analysis". Probability Theory and Related Fields. 73 (1): 153–158. doi:10.1007/bf01845999. ISSN 0178-8051. S2CID 121106515.
  6. ^ Azzalini, A. (1985). "A class of distributions which includes the normal ones". Scandinavian Journal of Statistics. 12: 171–178.
  7. ^ Azzalini, Adelchi; Capitanio, Antonella (2014). The skew-normal and related families. pp. 32–33. ISBN 978-1-107-02927-9.
  8. ^ Pewsey, Arthur. "Problems of inference for Azzalini's skewnormal distribution." Journal of Applied Statistics 27.7 (2000): 859-870

Read other articles:

The Holmfirth floods were a number of instances when severe flooding had occurred in the Holme Valley, West Yorkshire, England affecting Holmfirth and other settlements in the valley. The earliest record dates from 1738 and the latest from 1944. The most severe flood occurred early on the morning of 5 February 1852, when the embankment of the Bilberry reservoir collapsed causing the deaths of 81 people. It is recorded as the 23rd most serious, worldwide, in terms of loss of life from floods a...

 

 

Doarp Grou Lengte 19,36 m Breedte 3,63 m Diepgang 0,43 m Bemanning ± 12 personen Zeilen Zeiloppervlakte 164,8 m² Ontwerp Jaar 1909 Zeilteken Portaal    Maritiem Doarp Grou is het skûtsje waarmee een vertegenwoordiging van het Friese dorp Grouw (Fries: Grou) deelneemt aan de wedstrijden van de Sintrale Kommisje Skûtsjesilen. Het is het tweede skûtsje waarmee Grou meedoet aan de wedstrijden. Het eerste skûtsje kochten ze in 1957, maar hebben ze al na een jaar al weer vervangen d...

 

 

Lukisan sapi Lascaux Kuda Lascaux Lukisan Lascaux adalah lukisan dinding yang terletak di gua Lascaux di Dordogne di Prancis.[1] Lukisan dinding ini menggambarkan banyak spesies hewan dan gambar manusia yang dilukis dengan warna tanah berpigmen coklat, hitam, kuning dan merah.[1][2] Pigmen-pigmen ini dihasilkan dari oker, hematit, dan mangan yang digambarkan pada permukaan dinding batu kapur yang berwarna putih.[1] Seniman Lascaux menciptakan gambar-gambar ini ...

Villa Nora, 2019, Ansicht von der Kortumstraße Die Villa Nora ist eine ehemalige Unternehmervilla an der Kortumstraße 156 im Stadtparkviertel in Bochum.[1] Sie wurde 1897 bis 1899 für Heinrich Koehler, Generaldirektor der westfälischen Stahlwerke, errichtet. Den Namen erhielt sie durch den Kosenamen von Koehlers Frau Amélie. Heute befindet sich die Villa im Besitz einer Stiftung der Sparkasse Bochum und wird unter anderem für das gegenüberliegende Kunstmuseum Bochum genutzt. Da...

 

 

Kamehameha IV Rey de Hawái Kamehameha IV de Hawái.Reinado 11 de enero de 1856-30 de noviembre de 1863(8 años)Predecesor Kamehameha IIISucesor Kamehameha VInformación personalNombre completo Alekanetero (Alexander) ʻIolani Liholiho Kalanikualiholiho MakaCoronación 11 de enero de 1855Nacimiento 9 de febrero de 1834Honolulu, HawáiFallecimiento 30 de noviembre de 1863 (29 años)Honolulu, HawáiSepultura Mausoleo Real de HawáiFamiliaDinastía Casa de KamehamehaPadre KekūanaōʻaMadre...

 

 

هذه قائمة بالأفلام والمسلسلات التلفزيونية من وجهة نظر إسلامية، والمتعلقة بالحضارة الإسلامية، أي الإسلام والتاريخ الإسلامي والثقافة الإسلامية، تميل أغلب الأفلام والمسلسلات إلى تصوير المرأة بالحجاب، وتتوفر معظمها مع ترجمات ودبلجة بلغات متعددة.[1][2][3] مسلسلات...

Overview of the events of 1913 in music 1913 in music By location United Kingdom Norway By genre jazz By topic Overview of the events of 1913 in music List of years in music (table) … 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 … In film 1910 1911 1912 1913 1914 1915 1916 In radio 1910 1911 1912 1913 1914 1915 1916 Art Archaeology Architecture Literature Music Philosophy Science +... This is a list of notable events in music tha...

 

 

Fountain L. Thompson Fountain Land Thompson (* 18. November 1854 bei Scottville, Macoupin County, Illinois; † 4. Februar 1942 in Los Angeles) war ein US-amerikanischer Politiker (Demokratische Partei), der den Bundesstaat North Dakota im US-Senat vertrat. Der in der Nähe von Scottville geborene Thompson zog 1865 mit seiner Familie nach Girard, wo er die öffentlichen Schulen besuchte und die Rechte studierte. Zwar wurde er in die Anwaltskammer aufgenommen, arbeitete aber praktisch nicht in...

 

 

Genus of moths Comostola Comostola laesaria Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Geometridae Tribe: Hemitheini Genus: ComostolaMeyrick, 1888 Synonyms Pyrrhorachis Warren, 1896 Leucodesmia Warren, 1899 (preocc. Howard, 1895) Chloeres Turner, 1910 Comostola is a genus of moths in the family Geometridae erected by Edward Meyrick in 1888. They are found primarily in Asia and Australia.[1] Species Comosto...

16th-century monumental woodcut print The Triumphal Arch Detail of pinnacle from a coloured impression in Brunswick. The Triumphal Arch (also known as the Arch of Maximilian I, German: Ehrenpforte Maximilians I.) is a 16th-century monumental woodcut print commissioned by the Holy Roman Emperor Maximilian I. The composite image was printed on 36 large sheets of paper from 195 separate wood blocks. At 295 × 357 centimetres (116 × 141 in), it is one of the largest prin...

 

 

У Вікіпедії є статті про інших людей із прізвищем Фединський Юрій. Фединський Юрій Народився 1975СШАКраїна  СШАДіяльність композитор, виробник музичних інструментів Юрій Фединський (1975, США) — бандурист, композитор, що займається українською кобзарською традиціє...

 

 

هنري ستانلي بلومر معلومات شخصية الميلاد 3 مارس 1874(1874-03-03)مينيسوتا الوفاة 31 ديسمبر 1936 (62 سنة)روتشيستر، مينيسوتا مواطنة الولايات المتحدة الأمريكية الأب ألبرت بلامر  الحياة العملية المدرسة الأم جامعة نورث وسترنجامعة الشمال الغربي مدرسة فينبرغ للطب  المهنة طبيب باطني &...

2014 animated film AnahitDirected byDavit SahakyantsScreenplay byDavit SahakyantsNaira SahakyantsLyulya SahakyantsMusic byArmen MartirosyanVardan ZadoyanProductioncompanyRobert Sahakyants ProductionRelease date27 December 2014Running time90 minutesCountryArmeniaLanguageArmenian Anahit is a 2014 Armenian traditionally animated fantasy film directed by Davit Sahakyants, based on a screenplay by Davit, Naira Sahakyants and Lyulya Sahakyants (who also acted as co-director). The screenplay was bas...

 

 

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (квітень 2018) Спортивний симулятор (англ. sports game) — це жанр відеоігор, основ...

 

 

2015 film score by Christophe BeckAnt-Man (Original Motion Picture Soundtrack)Film score by Christophe BeckReleased July 17, 2015 (2015-07-17) (Digital) August 7, 2015 (2015-08-07) (Physical) GenreFilm scoreLength1:05:20Label Hollywood Marvel Music Christophe Beck chronology Hot Pursuit(2015) Ant-Man (Original Motion Picture Soundtrack)(2015) The Peanuts Movie(2015) Marvel Cinematic Universe soundtrack chronology Avengers: Age of Ultron(2015) Ant-Man(2015...

American college football rivalry Houston–Tulsa football rivalry Houston Cougars Tulsa Golden Hurricane First meetingDecember 2, 1950Tulsa, 28–21Latest meetingNovember 26, 2022Tulsa, 37–30Next meetingTBDStatisticsMeetings total46All-time seriesHouston leads, 26–20[1]Largest victoryHouston, 100–6 (1968)Longest win streakHouston, 5 (1968–1973)Current win streakTulsa, 1 (2022–present) [Interactive fullscreen map + nearby articles] Locations of Houston and Tulsa The Houston...

 

 

Locality in Castile and León, SpainLago de BabiaLocalityLago de BabiaShow map of Province of LeónLago de BabiaShow map of Castile and LeónLago de BabiaShow map of SpainCoordinates: 42°58′10″N 6°10′48″W / 42.96944°N 6.18000°W / 42.96944; -6.18000[1]Country SpainAutonomous community Castile and LeónProvinceProvince of LeónMunicipalityCabrillanesElevation1,345 m (4,413 ft)Population • Total24 Lago de Babia (Astur-Le...

 

 

AKM

Family of the modernized version of AK-47 Assault rifle For other uses, see AKM (disambiguation). This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (September 2018) AKM Both sides of the AKMTypeAssault riflePlace of originUSSRService historyIn service1959–presentUsed bySee UsersWarsSee ConflictsProduction historyDesignerMikhail ...

Bristol-Coanda Monoplanes Role TrainerType of aircraft Manufacturer Bristol Aeroplane Company Designer Henri Coandă First flight 1912 Number built 37 Variants Bristol TB.8 The Bristol Coanda Monoplanes were a series of monoplane trainers designed by the Romanian designer Henri Coandă for the British company British and Colonial Aeroplane Company. Several versions of the plane were built from 1912 onwards with both tandem and side-by-side cockpits. Several were purchased by the War Office fo...

 

 

Halaman ini berisi artikel tentang permaisuri Raja Kamehameha VI dari Hawaii. Untuk ratu yang bernama sama, lihat Ratu Emma. Ratu Emma. Emma Kalanikaumakaamano Kaleleonalani Naea Rooke, Ratu Hawaii (2 Januari 1836 – 25 April 1885) adalah permaisuri Raja Kamehameha IV dari tahun 1856 sampai wafatnya raja pada tahun 1863. Ia mencoba mengangkat dirinya sebagai Ratu melawan Raja David Kalakaua. Masamuda Emma dilahirkan dengan nama Emalani,[1] dan belakangan namanya menjadi...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!