Kaplan–Meier estimator

An example of a Kaplan–Meier plot for two conditions associated with patient survival.

The Kaplan–Meier estimator,[1][2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment. In other fields, Kaplan–Meier estimators may be used to measure the length of time people remain unemployed after a job loss,[3] the time-to-failure of machine parts, or how long fleshy fruits remain on plants before they are removed by frugivores. The estimator is named after Edward L. Kaplan and Paul Meier, who each submitted similar manuscripts to the Journal of the American Statistical Association.[4] The journal editor, John Tukey, convinced them to combine their work into one paper, which has been cited more than 34,000 times since its publication in 1958.[5][6]

The estimator of the survival function (the probability that life is longer than ) is given by:

with a time when at least one event happened, di the number of events (e.g., deaths) that happened at time , and the individuals known to have survived (have not yet had an event or been censored) up to time .

Basic concepts

A plot of the Kaplan–Meier estimator is a series of declining horizontal steps which, with a large enough sample size, approaches the true survival function for that population. The value of the survival function between successive distinct sampled observations ("clicks") is assumed to be constant.

An important advantage of the Kaplan–Meier curve is that the method can take into account some types of censored data, particularly right-censoring, which occurs if a patient withdraws from a study, is lost to follow-up, or is alive without event occurrence at last follow-up. On the plot, small vertical tick-marks state individual patients whose survival times have been right-censored. When no truncation or censoring occurs, the Kaplan–Meier curve is the complement of the empirical distribution function.

In medical statistics, a typical application might involve grouping patients into categories, for instance, those with Gene A profile and those with Gene B profile. In the graph, patients with Gene B die much quicker than those with Gene A. After two years, about 80% of the Gene A patients survive, but less than half of patients with Gene B.

To generate a Kaplan–Meier estimator, at least two pieces of data are required for each patient (or each subject): the status at last observation (event occurrence or right-censored), and the time to event (or time to censoring). If the survival functions between two or more groups are to be compared, then a third piece of data is required: the group assignment of each subject.[7]

Problem definition

Let be a random variable as the time that passes between the start of the possible exposure period, , and the time that the event of interest takes place, . As indicated above, the goal is to estimate the survival function underlying . Recall that this function is defined as

, where is the time.

Let be independent, identically distributed random variables, whose common distribution is that of : is the random time when some event happened. The data available for estimating is not , but the list of pairs where for , is a fixed, deterministic integer, the censoring time of event and . In particular, the information available about the timing of event is whether the event happened before the fixed time and if so, then the actual time of the event is also available. The challenge is to estimate given this data.

Derivation of the Kaplan–Meier estimator

Two derivations of the Kaplan–Meier estimator are shown. Both are based on rewriting the survival function in terms of what is sometimes called hazard, or mortality rates. However, before doing this it is worthwhile to consider a naive estimator.

A naive estimator

To understand the power of the Kaplan–Meier estimator, it is worthwhile to first describe a naive estimator of the survival function.

Fix and let . A basic argument shows that the following proposition holds:

Proposition 1: If the censoring time of event exceeds (), then if and only if .

Let be such that . It follows from the above proposition that

Let and consider only those , i.e. the events for which the outcome was not censored before time . Let be the number of elements in . Note that the set is not random and so neither is . Furthermore, is a sequence of independent, identically distributed Bernoulli random variables with common parameter . Assuming that , this suggests to estimate using

where the second equality follows because implies , while the last equality is simply a change of notation.

The quality of this estimate is governed by the size of . This can be problematic when is small, which happens, by definition, when a lot of the events are censored. A particularly unpleasant property of this estimator, that suggests that perhaps it is not the "best" estimator, is that it ignores all the observations whose censoring time precedes . Intuitively, these observations still contain information about : For example, when for many events with , also holds, we can infer that events often happen early, which implies that is large, which, through means that must be small. However, this information is ignored by this naive estimator. The question is then whether there exists an estimator that makes a better use of all the data. This is what the Kaplan–Meier estimator accomplishes. Note that the naive estimator cannot be improved when censoring does not take place; so whether an improvement is possible critically hinges upon whether censoring is in place.

The plug-in approach

By elementary calculations,

where the second to last equality used that is integer valued and for the last line we introduced

By a recursive expansion of the equality , we get

Note that here .

The Kaplan–Meier estimator can be seen as a "plug-in estimator" where each is estimated based on the data and the estimator of is obtained as a product of these estimates.

It remains to specify how is to be estimated. By Proposition 1, for any such that , and both hold. Hence, for any such that ,

By a similar reasoning that lead to the construction of the naive estimator above, we arrive at the estimator

(think of estimating the numerator and denominator separately in the definition of the "hazard rate" ). The Kaplan–Meier estimator is then given by

The form of the estimator stated at the beginning of the article can be obtained by some further algebra. For this, write where, using the actuarial science terminology, is the number of known deaths at time , while is the number of those persons who are alive (and not being censored) at time .

Note that if , . This implies that we can leave out from the product defining all those terms where . Then, letting be the times when , and , we arrive at the form of the Kaplan–Meier estimator given at the beginning of the article:

As opposed to the naive estimator, this estimator can be seen to use the available information more effectively: In the special case mentioned beforehand, when there are many early events recorded, the estimator will multiply many terms with a value below one and will thus take into account that the survival probability cannot be large.

Derivation as a maximum likelihood estimator

Kaplan–Meier estimator can be derived from maximum likelihood estimation of the discrete hazard function.[8][self-published source?] More specifically given as the number of events and the total individuals at risk at time , discrete hazard rate can be defined as the probability of an individual with an event at time . Then survival rate can be defined as:

and the likelihood function for the hazard function up to time is:

therefore the log likelihood will be:

finding the maximum of log likelihood with respect to yields:

where hat is used to denote maximum likelihood estimation. Given this result, we can write:

More generally (for continuous as well as discrete survival distributions), the Kaplan-Meier estimator may be interpreted as a nonparametric maximum likelihood estimator.[9]

Benefits and limitations

The Kaplan–Meier estimator is one of the most frequently used methods of survival analysis. The estimate may be useful to examine recovery rates, the probability of death, and the effectiveness of treatment. It is limited in its ability to estimate survival adjusted for covariates; parametric survival models and the Cox proportional hazards model may be useful to estimate covariate-adjusted survival.

The Kaplan-Meier estimator is directly related to the Nelson-Aalen estimator and both maximize the empirical likelihood.[10]

Statistical considerations

The Kaplan–Meier estimator is a statistic, and several estimators are used to approximate its variance. One of the most common estimators is Greenwood's formula:[11]

where is the number of cases and is the total number of observations, for .

For a 'sketch' of the mathematical derivation of the equation above, click on "show" to reveal

Greenwood's formula is derived[12][self-published source?] by noting that probability of getting failures out of cases follows a binomial distribution with failure probability . As a result for maximum likelihood hazard rate we have and . To avoid dealing with multiplicative probabilities we compute variance of logarithm of and will use the delta method to convert it back to the original variance:

using martingale central limit theorem, it can be shown that the variance of the sum in the following equation is equal to the sum of variances:[12]

as a result we can write:

using the delta method once more:

as desired.


In some cases, one may wish to compare different Kaplan–Meier curves. This can be done by the log rank test, and the Cox proportional hazards test.

Other statistics that may be of use with this estimator are pointwise confidence intervals,[13] the Hall-Wellner band[14] and the equal-precision band.[15]

Software

  • Mathematica: the built-in function SurvivalModelFit creates survival models.[16]
  • SAS: The Kaplan–Meier estimator is implemented in the proc lifetest procedure.[17]
  • R: the Kaplan–Meier estimator is available as part of the survival package.[18][19][20]
  • Stata: the command sts returns the Kaplan–Meier estimator.[21][22]
  • Python: the lifelines and scikit-survival packages each include the Kaplan–Meier estimator.[23][24]
  • MATLAB: the ecdf function with the 'function','survivor' arguments can calculate or plot the Kaplan–Meier estimator.[25]
  • StatsDirect: The Kaplan–Meier estimator is implemented in the Survival Analysis menu.[26]
  • SPSS: The Kaplan–Meier estimator is implemented in the Analyze > Survival > Kaplan-Meier... menu.[27]
  • Julia: the Survival.jl package includes the Kaplan–Meier estimator.[28]
  • Epi Info: Kaplan–Meier estimator survival curves and results for the log rank test are obtained with the KMSURVIVAL command.[29]

See also

References

  1. ^ Kaplan, E. L.; Meier, P. (1958). "Nonparametric estimation from incomplete observations". J. Amer. Statist. Assoc. 53 (282): 457–481. doi:10.2307/2281868. JSTOR 2281868.
  2. ^ Kaplan, E.L. in a retrospective on the seminal paper in "This week's citation classic". Current Contents 24, 14 (1983). Available from UPenn as PDF.
  3. ^ Meyer, Bruce D. (1990). "Unemployment Insurance and Unemployment Spells" (PDF). Econometrica. 58 (4): 757–782. doi:10.2307/2938349. JSTOR 2938349. S2CID 154632727.
  4. ^ Stalpers, Lukas J A; Kaplan, Edward L (May 4, 2018). "Edward L. Kaplan and the Kaplan-Meier Survival Curve". BSHM Bulletin: Journal of the British Society for the History of Mathematics. 33 (2): 109–135. doi:10.1080/17498430.2018.1450055. S2CID 125941631.
  5. ^ Kaplan, E. L.; Meier, Paul (1958). "Nonparametric Estimation from Incomplete Observations". Journal of the American Statistical Association. 53 (282): 457–481. doi:10.1080/01621459.1958.10501452. Retrieved February 27, 2023.
  6. ^ "Paul Meier, 1924–2011". Chicago Tribune. August 18, 2011. Archived from the original on September 13, 2017.
  7. ^ Rich, Jason T.; Neely, J. Gail; Paniello, Randal C.; Voelker, Courtney C. J.; Nussenbaum, Brian; Wang, Eric W. (September 2010). "A practical guide to understanding Kaplan-Meier curves". Otolaryngology–Head and Neck Surgery. 143 (3): 331–336. doi:10.1016/j.otohns.2010.05.007. PMC 3932959. PMID 20723767.
  8. ^ "STAT331 Unit 3" (PDF). Retrieved May 12, 2023.
  9. ^ Andersen, Per Kragh; Borgan, Ornulf; Gill, Richard D.; Keiding, Niels (1993). Statistical models based on counting processes. New York: Springer-Verlag. ISBN 0-387-97872-0.
  10. ^ Zhou, M. (2015). Empirical Likelihood Method in Survival Analysis (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b18598, https://books.google.com/books?id=9-b5CQAAQBAJ&dq=Does+the+Nelson%E2%80%93Aalen+estimator+construct+an+empirical+likelihood%3F&pg=PA7
  11. ^ Greenwood, Major (1926). A report on the natural duration of cancer. Issue 33 of Reports on public health and medical subjects. HMSO. OCLC 14713088.
  12. ^ a b "The Greenwood and Exponential Greenwood Confidence Intervals in Survival Analysis" (PDF). Retrieved May 12, 2023.
  13. ^ Fay, Michael P.; Brittain, Erica H.; Proschan, Michael A. (September 1, 2013). "Pointwise confidence intervals for a survival distribution with small samples or heavy censoring". Biostatistics. 14 (4): 723–736. doi:10.1093/biostatistics/kxt016. PMC 3769999. PMID 23632624.
  14. ^ Hall, W. J.; Wellner, Jon A. (1980). "Confidence bands for a survival curve from censored data". Biometrika. 67 (1): 133–143. doi:10.1093/biomet/67.1.133.
  15. ^ Nair, Vijayan N. (August 1984). "Confidence Bands for Survival Functions With Censored Data: A Comparative Study". Technometrics. 26 (3): 265–275. doi:10.1080/00401706.1984.10487964.
  16. ^ "Survival Analysis – Mathematica SurvivalModelFit". wolfram.com. Retrieved August 14, 2017.
  17. ^ "SAS/STAT(R) 14.1 User's Guide". support.sas.com. Retrieved May 12, 2023.
  18. ^ Therneau, Terry M. (August 9, 2022). "survival: Survival Analysis". The Comprehensive R Archive Network. Retrieved November 30, 2022.
  19. ^ Willekens, Frans (2014). "Statistical Packages for Multistate Life History Analysis". Multistate Analysis of Life Histories with R. Use R!. Springer. pp. 135–153. doi:10.1007/978-3-319-08383-4_6. ISBN 978-3-319-08383-4.
  20. ^ Chen, Ding-Geng; Peace, Karl E. (2014). Clinical Trial Data Analysis Using R. CRC Press. pp. 99–108. ISBN 9781439840214.
  21. ^ "sts — Generate, graph, list, and test the survivor and cumulative hazard functions" (PDF). Stata Manual.
  22. ^ Cleves, Mario (2008). An Introduction to Survival Analysis Using Stata (Second ed.). College Station: Stata Press. pp. 93–107. ISBN 978-1-59718-041-2.
  23. ^ "lifelines — lifelines 0.27.7 documentation". lifelines.readthedocs.io. Retrieved May 12, 2023.
  24. ^ "sksurv.nonparametric.kaplan_meier_estimator — scikit-survival 0.20.0". scikit-survival.readthedocs.io. Retrieved May 12, 2023.
  25. ^ "Empirical cumulative distribution function – MATLAB ecdf". mathworks.com. Retrieved June 16, 2016.
  26. ^ "Kaplan-Meier Survival Estimates". statsdirect.co.uk. Retrieved May 12, 2023.
  27. ^ "Kaplan-Meier method in SPSS Statistics | Laerd Statistics".
  28. ^ "Kaplan-Meier · Survival.jl".
  29. ^ "Epi Info™ User Guide - Command Reference - Analysis Commands: KMSURVIVAL". Retrieved October 30, 2023.

Further reading

Read other articles:

قرية زارى الحجل  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حجة المديرية مديرية أسلم العزلة عزلة أسلم الوسط السكان التعداد السكاني 2004 السكان 263   • الذكور 134   • الإناث 129   • عدد الأسر 33   • عدد المساكن 33 معلومات أخرى التوقيت توقيت اليمن (+3 غريني...

 

La BorinqueñaInformación generalLetra Lola Rodríguez de Tió, 1867Música [Paco Ramírez], 1967Adoptado 1952Multimedia La Borinqueña (instrumental)noicon¿Problemas al reproducir este archivo?[editar datos en Wikidata] Lola Rodríguez de Tió. La Borinqueña es el Himno del Estado Libre Asociado de Puerto Rico. La música fue compuesta como una danza popular y sin connotaciones políticas en 1867 por Félix Astol Artés. Esta fue adaptada en 1901 por Manuel Fernández Juncos con...

 

Bagian dari seri tentangAgama Buddha Sejarah dan PenyebaranGaris waktu • Sidang agung • Asia Tenggara • Asia Timur • Tibet • Asia Tengah • Indonesia • Dunia Barat AliranTheravāda • Mahāyāna • Vajrāyāna • Sthaviravāda • Mahāsāṃghika Konsep UtamaTiga Permata • Ketuhanan • Lima Hukum Alam • Puasa • Saṃsāra • Tiga Corak Umum • Lima Agregat • Hukum Sebab Musaba...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) سلطان محمد (بالفارسية: سلطان محمد)‏  معلومات شخصية الميلاد العقد 1470  تبريز  الوفاة سنة 1555  تبريز  مواطنة الدولة الصفوية  الحياة العملية المهنة...

 

Proechimys trinitatus Охоронний статус Даних недостатньо (МСОП 3.1) Біологічна класифікація Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клада: Синапсиди (Synapsida) Клас: Ссавці (Mammalia) Ряд: Мишоподібні (Rodentia) Родина: Щетинцеві (Echimyidae) Підродина: Echimyinae Триба: Myocastorini Рід: Proechimys Вид: P. trinitatis Б

 

The Ketchup Song (Aserejé)Singel oleh Las Ketchupdari album Las Hijas del TomateDirilis2002Direkam???GenrePop, Pantai, Pop LatinDurasi3:32 Aserejé (Inggris: The Ketchup Song) adalah lagu yang merupakan hit internasional pada tahun 2002. Lagu ini ada dalam dua bahasa, Spanyol dan Inggris, dengan nantinya ditampilkan dalam gabungan bahasa Inggris dan bahasa Spanyol. Lagu ini dinyanyikan oleh Las Ketchup dari album Las Hijas del Tomate. Pranala luar Artikel bertopik lagu, musik, atau alat musi...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2019) مارينا آند ذا دايموندز (باليونانية: Marina)‏    معلومات شخصية اسم الولادة (بالإنجليزية: Marina Diamandis Lambrinis)‏  الميلاد 10 أكتوبر 1985 (38 سنة)[1][2]  برينمو...

 

Bilateral relationsArgentina-Azerbaijan relations Argentina Azerbaijan Current and historical relations between Argentina and Azerbaijan have existed for decades, since Argentina's recognition of Azerbaijan on 9 March 1992. History Argentine President Cristina Fernández de Kirchner meeting with Azerbaijani Foreign Minister Elmar Mammadyarov in Buenos Aires On 25 December 1991 Azerbaijan obtained its independence after the Dissolution of the Soviet Union. On 9 March 1992, Argentina recognized...

 

Östergötlands län Provincie in Zweden Coördinaten 58°24'38NB, 15°36'49OL Algemeen Oppervlakte 10.562 km² Inwoners (2021) 469.107 (44/km²) Hoofdstad Linköping Gemeenten in de provincie Portaal    Zweden Östergötlands län (provincie Östergötland) is een provincie in het zuidoosten van Zweden. Ze ligt aan de Oostzee en grenst aan de provincies Kalmar län, Jönköpings län, Västra Götalands län, Örebro län en Södermanlands län. De hoofdstad is Linköping. De opper...

أحمد فارس الشدياق معلومات شخصية اسم الولادة فارس يوسف الشدياق  الميلاد سنة 1806[1]  عشقوت  الوفاة 20 سبتمبر 1887 (80–81 سنة)[1]  قاضي كوي  مكان الدفن حازمية[2]  مواطنة لبنان الدولة العثمانية  الأولاد سليم إخوة وأخوات أسعد الشدياق،  وطنوس الشدياق  ...

 

British Labour Party politician (1911–1982) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tony Greenwood, Baron Greenwood of Rossendale – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this template message) The Right HonourableThe Lord Greenwood of RossendaleP...

 

左手一本のシュート〜夢あればこそ!脳出血、右半身麻痺からの復活著者 島沢優子発行日 2011年5月18日発行元 小学館ジャンル ノンフィクション国 日本言語 日本語形態 四六判ページ数 216公式サイト shogakukan.co.jpコード ISBN 978-4-09-388155-5 文庫判(ISBN 978-4-09-406032-4) ウィキポータル 書物 [ ウィキデータ項目を編集 ]テンプレートを表示 『左手一本のシュート〜夢あればこ...

Canadian chemist Karel WiesnerFRS FRSC OCKarel WiesnerBornKarel František Wiesner(1919-11-25)November 25, 1919Prague, CzechoslovakiaDiedNovember 28, 1986(1986-11-28) (aged 67)Fredericton, New Brunswick, CanadaCitizenshipCanadaEducationRNDr (1945)Alma materCharles UniversityKnown foralkaloids, cardiac glycosidesSpouseBlanka PevnaAwardsCIC Medal (1963)Order of Canada (1975)Centenary Prize (1976)Ernest Guenther Award (1983)Killam Prize (1986)Scientific careerFieldsorganic...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) كاثرين كارل   معلومات شخصية الميلاد سنة 1865[1][2]  نيو أورلينز[3]،  ونيو أورلينز  الوفاة 7 ديسمبر 1938 (72–73 سنة)  نيويورك[4]،  وبكين&...

 

1954 film by Herbert L. Strock GogTheatrical release posterDirected byHerbert L. StrockWritten byTom Taggart (screenplay)Ivan Tors (story)Richard G. Taylor (dialogue)Produced byIvan TorsStarringRichard EganConstance DowlingHerbert MarshallCinematographyLothrop B. WorthEdited byHerbert L. StrockMusic byHarry SukmanProductioncompanyIvan Tors ProductionsDistributed byUnited ArtistsRelease dates June 5, 1954 (1954-06-05) (Los Angeles) August 13, 1954 (1954-08-13)...

PT KapanLagi Dot Com NetworksNama dagangKLYSebelumnya:KLN (2014-2018)JenisPublikIndustriMediaPendahuluKapanLagi Group (2003-2014)Fimela Network (2010-2014)Didirikan28 Februari 2003 (sebagai KapanLagi Group)2010 (sebagai Fimela Network)3 Maret 2014 (format saat ini)PendiriSteve ChristianEka WihartoBen SubiaktoDian M. SoedarjoKantorpusatJakarta, IndonesiaTokohkunciSteve Christian (Direktur Utama)ProdukSitus onlinePemilikSurya Citra MediaSitus webwww.kly.id PT KapanLagi Dot Com Networks, beroper...

 

Venezuelan artist, sculptor (1925–1994) Elsa GramckoBorn(1925-04-25)April 25, 1925Puerto Cabello, VenezuelaDied1994 (aged 68–69)Caracas, VenezuelaNationalityVenezuelanKnown forPaintingMovementAbstract Art Elsa Gramcko (1925–1994)[1] was a Venezuelan artist, known as an abstract sculptor and painter. Her earlier works, which date from 1954, were geometric paintings, while her later works were more tachist in nature.[2] While her earlier works consisted ...

 

Tourist attraction in Albania Topographical map of the Albanian Riviera The Albanian Riviera (Albanian: Riviera shqiptare, pronounced [ɾiviˈɛɾa ʃcipˈtaɾɛ]), also popularly known as Bregu, is a coastline along the Northeastern Ionian Sea in the Mediterranean Sea encompassing the districts of Sarandë and Vlorë in Southwestern Albania. It forms an important section of the Albanian Ionian Sea Coast dotted with the villages of Palasë, Dhërmi, Vuno, Himara, Qeparo, Borsh, Piqera...

2nd episode of the 10th season of The Simpsons The Wizard of Evergreen TerraceThe Simpsons episodeHomer’s obsession with Thomas Edison causes boredom for everyone around him. This scenario was inspired by Dan Greaney’s personal experiences.Episode no.Season 10Episode 2Directed byMark KirklandWritten byJohn SwartzwelderProduction code5F21Original air dateSeptember 20, 1998 (1998-09-20)Guest appearance William Daniels as KITT Episode featuresChalkboard gagI will not file...

 

Railway station in the Northern Territory, Australia DarwinDarwin's railway station, known as the Berrimah passenger terminal, in 2007General informationLocationSaloo Street, East Arm, Northern TerritoryAustraliaCoordinates12°28′23″S 130°54′14″E / 12.472964°S 130.903978°E / -12.472964; 130.903978Owned byJourney BeyondLine(s)Adelaide-Darwin railwayDistance2975 kilometres (1849 miles) from AdelaidePlatforms1ConstructionStructure typeGround levelOther informat...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!