Hyperexponential distribution

Diagram showing queueing system equivalent of a hyperexponential distribution

In probability theory, a hyperexponential distribution is a continuous probability distribution whose probability density function of the random variable X is given by

where each Yi is an exponentially distributed random variable with rate parameter λi, and pi is the probability that X will take on the form of the exponential distribution with rate λi.[1] It is named the hyperexponential distribution since its coefficient of variation is greater than that of the exponential distribution, whose coefficient of variation is 1, and the hypoexponential distribution, which has a coefficient of variation smaller than one. While the exponential distribution is the continuous analogue of the geometric distribution, the hyperexponential distribution is not analogous to the hypergeometric distribution. The hyperexponential distribution is an example of a mixture density.

An example of a hyperexponential random variable can be seen in the context of telephony, where, if someone has a modem and a phone, their phone line usage could be modeled as a hyperexponential distribution where there is probability p of them talking on the phone with rate λ1 and probability q of them using their internet connection with rate λ2.

Properties

Since the expected value of a sum is the sum of the expected values, the expected value of a hyperexponential random variable can be shown as

and

from which we can derive the variance:[2]

The standard deviation exceeds the mean in general (except for the degenerate case of all the λs being equal), so the coefficient of variation is greater than 1.

The moment-generating function is given by

Fitting

A given probability distribution, including a heavy-tailed distribution, can be approximated by a hyperexponential distribution by fitting recursively to different time scales using Prony's method.[3]

See also

References

  1. ^ Singh, L. N.; Dattatreya, G. R. (2007). "Estimation of the Hyperexponential Density with Applications in Sensor Networks". International Journal of Distributed Sensor Networks. 3 (3): 311. CiteSeerX 10.1.1.78.4137. doi:10.1080/15501320701259925.
  2. ^ H.T. Papadopolous; C. Heavey; J. Browne (1993). Queueing Theory in Manufacturing Systems Analysis and Design. Springer. p. 35. ISBN 9780412387203.
  3. ^ Feldmann, A.; Whitt, W. (1998). "Fitting mixtures of exponentials to long-tail distributions to analyze network performance models" (PDF). Performance Evaluation. 31 (3–4): 245. doi:10.1016/S0166-5316(97)00003-5.

Read other articles:

Polish rower Roger VereyRoger Verey, Berlin 1936Personal informationBirth nameRoger Roland VereyBorn14 March 1912Lausanne, SwitzerlandDied6 September 2000(2000-09-06) (aged 88)Kraków, PolandHeight186 cm (6 ft 1 in)Weight82 kg (181 lb)SportSportRowing Medal record Men's rowing Representing  Poland Olympic Games 1936 Berlin Double sculls European Rowing Championships 1932 Belgrade Double sculls 1933 Budapest Single sculls 1934 Lucerne Single sculls 1935 ...

 

Fairchild KR-34 KR-34 Role Utility biplaneType of aircraft Manufacturer Kreider-Reisner AircraftFairchild Aircraft First flight 1928 The Kreider-Reisner Challenger (later the Fairchild KR series) was an American utility biplane aircraft designed and produced by the Kreider-Reisner Aircraft Company, which was later taken over by the Fairchild Aircraft Company. Development The Challenger C-1 was possibly developed from the similar Waco 10. A poorly documented aircraft, the C-1 was progressively...

 

Friedrich Albert LangeLahir28 September 1828Wald dekat SolingenMeninggal21 November 1875(1875-11-21) (umur 47)MarburgEraFilsafat abad ke-19KawasanFilsafat BaratAliranNeo-Kantianisme[1]Gagasan pentingKritik terhadap Materialisme Marxis Dipengaruhi Immanuel Kant, Hermann von Helmholtz[2] Memengaruhi Friedrich Nietzsche, Hermann Cohen, Eduard Bernstein Friedrich Albert Lange (bahasa Jerman: [ˈlaŋə]; 28 September 1828 – 21 November 1875) adalah se...

Dragon CapitalIndustryfinancial services Founded2000 FounderTomas Fiala HeadquartersKyiv , Ukraine  Dragon Capital is a Ukrainian investment management company founded by Czech businessman Tomáš Fiala [cs] and partners in 2000 in Kyiv. It works in the sphere of financial services; provides a full range of investment banking and brokerage services, private investment, asset management for institutional, corporate and private clients. In 2016-2020, Dragon...

 

KulturaКультура Localidad KulturaLocalización de Kultura en Krai de Krasnodar KulturaLocalización de Kultura en Rusia europea Ubicación del krai de Krasnodar en RusiaCoordenadas 45°38′01″N 40°23′04″E / 45.633547222222, 40.384411111111Entidad Localidad • País RusiaAltitud   • Media 61 m s. n. m.Población (2010)   • Total 5 hab.Código postal 352113Prefijo telefónico 86196[editar datos en Wikidata] Kultur...

 

Sally Rowley Información personalNacimiento 20 de octubre de 1931 Trenton (Estados Unidos) Fallecimiento 14 de mayo de 2020 (88 años)Tucson (Estados Unidos) Causa de muerte COVID-19 Residencia Nueva York, México, Hawái y Norte de California Nacionalidad EstadounidenseLengua materna Inglés FamiliaPareja Felix Pasilis (1961-2018) Hijos 2 y 1 EducaciónEducada en Stephens College Información profesionalOcupación Activista por los derechos civiles, aviadora, auxiliar de vuelo, secreta...

Alan Simpson Copresidente de la Comisión Nacional de Responsabilidad y Reforma Fiscal 10 de febrero de 2010-1 de diciembre de 2010Junto con Erskine BowlesPredecesor Puesto establecidoSucesor Puesto suprimido Líder de la Minoría del Senado de los Estados Unidos 3 de enero de 1987-3 de enero de 1995Jefe de Gobierno Bob DolePredecesor Alan CranstonSucesor Wendell Ford Líder de la Mayoría del Senado de los Estados Unidos 3 de enero de 1985-3 de enero de 1987Jefe de Gobierno Bob DolePredeceso...

 

Educational radio program The American School of the AirIn 1940 composer William Grant Still received a commission from CBS to create an original composition for The American School of the Air.Other namesThe American School of the Air of the AmericasGenreEducational programmingCountry of originUnited StatesLanguage(s)EnglishHome stationWABCSyndicatesCBSOriginal releaseFebruary 4, 1930 (1930-02-04) –April 30, 1948 (1948-04-30) The American School of the Air was a half-hour edu...

 

Prefecture of Japan Not to be confused with Miyagi Prefecture. Prefecture in Kyushu, JapanMiyazaki Prefecture 宮崎県PrefectureJapanese transcription(s) • Japanese宮崎県 • RōmajiMiyazaki-kenPanoramic view of the Kakutō Basin in Ebino City, Miyazaki Prefecture. The Ebino Interchange between the Kyushu and Miyazaki Expressways can be seen FlagSymbolAnthem: Miyazaki kenminkaCountry JapanRegionKyushuIslandKyushuCapitalMiyazaki (city)SubdivisionsDistricts: ...

Pour les articles homonymes, voir Pégase (homonymie). PégasePrésentationType Réacteur de rechercheLocalisationLocalisation  FranceCoordonnées 43° 41′ 18″ N, 5° 45′ 40″ Emodifier - modifier le code - modifier Wikidata Pégase est un ancien réacteur nucléaire de recherche localisé à Cadarache (Bouches-du-Rhône). Il a divergé pour la première fois le 4 avril 1963[1]. Il a fonctionné de 1963 à 1975 pour réaliser des essais de combustible...

 

Large species of baleen whale Sei whale[1] Sei whale mother and calf Size compared to an average human Conservation status Endangered (IUCN 3.1)[2] CITES Appendix I (CITES)[3] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Infraorder: Cetacea Family: Balaenopteridae Genus: Balaenoptera Species: B. borealis Binomial name Balaenoptera borealisLesson, 1828 Subspecies B.b.borealis B.b.schleg...

 

This article is about the current high school in Goffstown, New Hampshire. For the former high school, listed in the National Register of Historic Places, see Upper Elementary School (Goffstown, New Hampshire). School in Goffstown, New Hampshire, United StatesGoffstown High SchoolGoffstown High SchoolAddress27 Wallace RoadGoffstown, New Hampshire 03045United StatesCoordinates43°00′45″N 71°35′00″W / 43.01250°N 71.58333°W / 43.01250; -71.58333InformationSchoo...

Behavior linked to spiritual pursuits For other uses, see Divine madness (disambiguation). Divine madness, also known as theia mania and crazy wisdom, refers to unconventional, outrageous, unexpected, or unpredictable behavior linked to religious or spiritual pursuits. Examples of divine madness can be found in Hellenism, Christianity, Hinduism, Buddhism, Islam, and Shamanism. It is usually explained as a manifestation of enlightened behavior by persons who have transcended societal norms, or...

 

American rapper (born 1991) Babyface RayBabyface Ray in 2022Background informationBirth nameMarcellus Rayvon Register[1]Born (1991-02-07) February 7, 1991 (age 32)Detroit, Michigan, U.S.[2]GenresHip hoptrapOccupation(s)RappersongwriterYears active2014-present[3]LabelsEmpireMusical artist Marcellus Rayvon Register[1] (born February 7, 1991),[4] known professionally as Babyface Ray, is an American rapper from Detroit, Michigan.[2] He is noted...

 

Name list For other uses, see Anthony (disambiguation). AnthonyMark AntonyPronunciationUK: /ˈæntəni/, US: /ˈænθəni/[1]GenderMaleLanguage(s)EnglishOriginLanguage(s)Latin, possibly from EtruscanWord/nameAntoniusOther namesAlternative spelling Anthoni Anthonie Anthoney Variant form(s) Antony Antonio Anton Antonis Antoine Antun Ante Anto Anton Toni Tonino Pet form(s)Ant, Anton, Antonino, Nino, Toni, Tony, Tone, Toño Anthony, also spelled Antony, is a masculine given name derived f...

2011 concert tour by 2NE1 For the Japanese extended play by 2NE1, see 2NE1 (2011 EP). Nolza!Tour by 2NE1Promotional poster for the tourAssociated album2NE1 (2011) / NolzaStart dateAugust 26, 2011End dateOctober 2, 2011Legs2No. of shows3 in South Korea6 in Japan9 in total2NE1 concert chronology Nolza Tour(2011) New Evolution Global Tour(2012) The Nolza! tour was the debut concert tour by Korean group 2NE1.[1] The tour supported their second extended play, 2NE1 (2011), and its Japanese ...

 

Filipinos in China在华菲律宾人Mga Pilipino sa TsinaTotal populationMainland China: 12,254Hong Kong: 140,000Regions with significant populationsHong Kong, Beijing, Guangzhou, Shanghai, Xiamen, MacauLanguagesSpanish, Filipino, English, other languages of the Philippines, Chinese (Cantonese, Mandarin)ReligionRoman CatholicismRelated ethnic groupsOverseas Filipinos There are a significant number of Filipinos in China consisting of migrants and expatriates from the Philippines to the People'...

 

Scottish Division One 1894-1895 Competizione Scottish Division One Sport Calcio Edizione 5ª Organizzatore SFL Date dall'11 agosto 1894al 18 maggio 1895 Luogo  Scozia Partecipanti 10 Formula Girone all'italiana A/R Risultati Vincitore Hearts(1º titolo) Retrocessioni Leith Athletic Statistiche Miglior marcatore James Miller (12) Incontri disputati 90 Gol segnati 388 (4,31 per incontro) Cronologia della competizione 1893-94 1895-96 Manuale La Scottish Division One 1894-1895 ...

Pemilihan umum Pakistan 19701945 (India Britania)1973 (Bangladesh) →1977 (Pakistan)7 Desember 1970300 dari 313 kursi dalam Majelis Nasional151 kursi untuk meraih status mayoritasTerdaftar56,941,500Kehadiran pemilih57.96%Kandidat   Partai pertama Partai kedua   Ketua Sheikh Mujibur Rahman Zulfikar Ali Bhutto Partai Liga Awami Bangladesh PPP Ketua sejak 5 Desember 1963 30 November 1967 Kursi ketua Dacca Larkana Kursi yang dimenangkan 167 86 Suara rakyat 12,9...

 

Olympic sailor from Italy Mario Celon[1]Personal informationNationality ItalyBorn(1959-08-29)29 August 1959VeronaHeight1.72 m (5.6 ft)Sailing careerClassSolingClubFraglia Vela Riva Updated on 29 February 2020. Mario Celon (born: 29 August 1959 Verona) is a sailor from Italy, who represented his country at the 1996 Summer Olympics in Savannah, United States as helmsman in the Soling. With crew members Gianni Torboli and Claudio Celon they took the 10th place.[2] ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!