Antipodally symmetric probability distribution on the n-sphere
In statistics, the Bingham distribution, named after Christopher Bingham, is an antipodally symmetric probability distribution on the n-sphere.[1] It is a generalization of the Watson distribution and a special case of the Kent and Fisher–Bingham distributions.
The Bingham distribution is widely used in paleomagnetic data analysis,[2] and has been used in the field of computer vision.[3][4][5]
Its probability density function is given by
which may also be written
where x is an axis (i.e., a unit vector), M is an orthogonal orientation matrix, Z is a diagonal concentration matrix, and
is a confluent hypergeometric function of matrix argument. The matrices M and Z are the result of diagonalizing the positive-definite covariance matrix of the Gaussian distribution that underlies the Bingham distribution.
See also
References
|
---|
Discrete univariate | with finite support | |
---|
with infinite support | |
---|
|
---|
Continuous univariate | supported on a bounded interval | |
---|
supported on a semi-infinite interval | |
---|
supported on the whole real line | |
---|
with support whose type varies | |
---|
|
---|
Mixed univariate | |
---|
Multivariate (joint) | |
---|
Directional | |
---|
Degenerate and singular | |
---|
Families | |
---|
|