Logit-normal distribution

Logit-normal
Probability density function
Plot of the Logitnormal PDF
Cumulative distribution function
Plot of the Logitnormal PDF
Notation
Parameters σ2 > 0 — squared scale (real),
μR — location
Support x ∈ (0, 1)
PDF
CDF
Mean no analytical solution
Median
Mode no analytical solution
Variance no analytical solution
MGF no analytical solution

In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution. If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed. It is also known as the logistic normal distribution,[1] which often refers to a multinomial logit version (e.g.[2][3][4]).

A variable might be modeled as logit-normal if it is a proportion, which is bounded by zero and one, and where values of zero and one never occur.

Characterization

Probability density function

The probability density function (PDF) of a logit-normal distribution, for 0 < x < 1, is:

where μ and σ are the mean and standard deviation of the variable’s logit (by definition, the variable’s logit is normally distributed).

The density obtained by changing the sign of μ is symmetrical, in that it is equal to f(1-x;-μ,σ), shifting the mode to the other side of 0.5 (the midpoint of the (0,1) interval).

Plot of the Logitnormal PDF for various combinations of μ (facets) and σ (colors)

Moments

The moments of the logit-normal distribution have no analytic solution. The moments can be estimated by numerical integration, however numerical integration can be prohibitive when the values of are such that the density function diverges to infinity at the end points zero and one. An alternative is to use the observation that the logit-normal is a transformation of a normal random variable. This allows us to approximate the -th moment via the following quasi Monte Carlo estimate

where is the standard logistic function, and is the inverse cumulative distribution function of a normal distribution with mean and variance . When , this corresponds to the mean.

Mode or modes

When the derivative of the density equals 0 then the location of the mode x satisfies the following equation:

For some values of the parameters there are two solutions, i.e. the distribution is bimodal.

Multivariate generalization

The logistic normal distribution is a generalization of the logit–normal distribution to D-dimensional probability vectors by taking a logistic transformation of a multivariate normal distribution.[1][5][6]

Probability density function

The probability density function is:

where denotes a vector of the first (D-1) components of and denotes the simplex of D-dimensional probability vectors. This follows from applying the additive logistic transformation to map a multivariate normal random variable to the simplex:

Gaussian density functions and corresponding logistic normal density functions after logistic transformation.

The unique inverse mapping is given by:

.

This is the case of a vector x which components sum up to one. In the case of x with sigmoidal elements, that is, when

we have

where the log and the division in the argument are taken element-wise. This is because the Jacobian matrix of the transformation is diagonal with elements .

Use in statistical analysis

The logistic normal distribution is a more flexible alternative to the Dirichlet distribution in that it can capture correlations between components of probability vectors. It also has the potential to simplify statistical analyses of compositional data by allowing one to answer questions about log-ratios of the components of the data vectors. One is often interested in ratios rather than absolute component values.

The probability simplex is a bounded space, making standard techniques that are typically applied to vectors in less meaningful. Statistician John Aitchison described the problem of spurious negative correlations when applying such methods directly to simplicial vectors.[5] However, mapping compositional data in through the inverse of the additive logistic transformation yields real-valued data in . Standard techniques can be applied to this representation of the data. This approach justifies use of the logistic normal distribution, which can thus be regarded as the "Gaussian of the simplex".

Relationship with the Dirichlet distribution

Logistic normal approximation to Dirichlet distribution

The Dirichlet and logistic normal distributions are never exactly equal for any choice of parameters. However, Aitchison described a method for approximating a Dirichlet with a logistic normal such that their Kullback–Leibler divergence (KL) is minimized:

This is minimized by:

Using moment properties of the Dirichlet distribution, the solution can be written in terms of the digamma and trigamma functions:

This approximation is particularly accurate for large . In fact, one can show that for , we have that .

See also

References

  1. ^ a b Aitchison, J.; Shen, S. M. (1980). "Logistic-normal distributions: Some properties and uses". Biometrika. 67 (2): 261. doi:10.2307/2335470. ISSN 0006-3444. JSTOR 2335470.
  2. ^ http://people.csail.mit.edu/tomasz/papers/huang_hln_tech_report_2006.pdf [bare URL PDF]
  3. ^ Peter Hoff, 2003. Link
  4. ^ "Log-normal and logistic-normal terminology - AI and Social Science – Brendan O'Connor". brenocon.com. Retrieved 18 April 2018.
  5. ^ a b J. Atchison. "The Statistical Analysis of Compositional Data." Monographs on Statistics and Applied Probability, Chapman and Hall, 1986. Book
  6. ^ Hinde, John (2011). "Logistic Normal Distribution". In Lovric, Miodrag (ed.). International Encyclopedia of Statistical Sciences. Springer. pp. 754–755. doi:10.1007/978-3-642-04898-2_342. ISBN 978-3-642-04897-5.

Further reading

Read other articles:

سفارة الهند في الصين الهند الصين   الإحداثيات 39°57′08″N 116°27′41″E / 39.952196916667°N 116.46126661111°E / 39.952196916667; 116.46126661111  البلد الصين  المكان بكين  الموقع الالكتروني الموقع الرسمي  تعديل مصدري - تعديل   سفارة الهند في الصين هي أرفع تمثيل دبلوماسي[1] لدولة ال...

 

  هذه المقالة عن ورد. لمعانٍ أخرى، طالع ورد (توضيح). اضغط هنا للاطلاع على كيفية قراءة التصنيف جنس الورد الورد الخشن المرتبة التصنيفية جنس[1]  التصنيف العلمي النطاق: حقيقيات النوى المملكة: نباتات الفرقة العليا: نباتات جنينية القسم: نباتات وعائية الشعبة: حقيقيات الأو

 

Ali bin AbdurrahmanAl-Habib Ali bin Abdurrahman al-HabsyiHabib aliNamaAli bin AbdurrahmanNisbahal-Habsyi KwitangKebangsaanIndonesiaJabatanDa'iKeturunanAbdurrahmanMuhammad Habib Ali bin Abdurrahman Alhabsyi, atau dikenal dengan nama Habib Ali Kwitang (20 April 1870 – 13 Oktober 1968) adalah salah seorang tokoh penyiar agama Islam terdepan di Jakarta pada abad 20. Ia juga pendiri dan pimpinan pertama pengajian Majelis Taklim Kwitang yang merupakan satu cikal-bakal organisasi-org...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Environmental chamber – news · newspapers · books · scholar · JSTOR (July 2017) (Learn how and when to remove this template message) Example of a temperature/humidity chamber Example of a Walk-In Environmental Chamber used for automobile reliability testing in ...

 

天主教聖安德肋小學St. Andrew's Catholic Primary School天主教聖安德肋小學外面地址 香港新界西貢區將軍澳調景嶺翠嶺路30號邮政编码info@saops.edu.hk类型津貼宗教背景天主教隶属天主教香港教區创办日期2004学区西貢區校監馮賜豪先生校長陳善科先生副校长楊佩玲女士性别男女校語言中文及英文授課時間全日制電話號碼(852)22463313传真號碼(852)22463535学校网址http://www.sacps.edu.hk/ 天主...

 

Diploma Perang Kemerdekaan I Satyalancana Perang Kemerdekaan I adalah sebuah tanda kehormatan yang diberikan kepada anggota Angkatan Bersenjata yang mengikuti sepenuhnya peristiwa Perang Kemerdekaan I dari tanggal 20 Juni 1947 sampai dengan 22 Februari 1948, kecuali dalam hal mereka tertawan, mendapat luka-luka dan invalid. (Pasal 18 ayat 1 UU no.70/1958) Referensi (Indonesia) Penetapan Undang-undang Darurat No. 2 Tahun 1958 tentang Tanda-tanda Penghargaan untuk Anggota Angkatan Perang (Lemba...

У этого термина существуют и другие значения, см. Резвый. РезвыйS-4 Служба  Российская империя → Финляндия Класс и тип судна эскадренный миноносец Изготовитель Невский завод Строительство начато 1899 год Спущен на воду 31 августа 1899 года Введён в эксплуатацию Май 1902 го...

 

2023 Indian comedy film Deiva MachanTheatrical release posterDirected byMartyn Nirmal KumarWritten byMartyn Nirmal KumarProduced byUdaya KumarGeeta UdayakumarM. P. VeeramaniStarring Vimal Pandiarajan Anitha Sampath CinematographyCamil J. AlexEdited byS ElayarajaMusic byScore:AjeshSongs:Godwin J. KodanProductioncompaniesUday ProductionsMagic Touch PicturesRelease date 21 April 2023 (2023-04-21) CountryIndiaLanguageTamil Deiva Machan is a 2023 Indian Tamil-language fantasy comedy...

 

The Matt and Jo ShowThe Matt and Jo Show logoOther namesMatt, Jo & Benno with the Fabulous Adam RichardGenreRadio showRunning time3 hoursCountry of origin AustraliaLanguage(s)EnglishStarringMatt Tilley (2003–2013)Jo Stanley (2003–2013)Troy Ellis (2003–2013)Adam Richard (2003–2013)Chris Bennett (2003)Produced byKylie BrownJerimiah Busniak (audio)Carlie Sullivan (online)Executive producer(s)Paul Dowsley, Mel MurphyRecording studioSouth Melbourne, VictoriaOriginal release2003 ...

Israeli politician Rina FrenkelFaction represented in the Knesset2013–2015Yesh Atid Personal detailsBorn (1956-09-17) 17 September 1956 (age 67)Smolensk, Soviet Union Rina Frenkel (Hebrew: רינה פרנקל, born 17 September 1956) is an Israeli politician. She served as a member of the Knesset between 2013 and 2015. Biography Born in the Smolensk in the Soviet Union (today in Russia), Frenkel immigrated to Israel in 1990. A resident of Nahariya, Frenkel is employed as the assistant ...

 

У этого термина существуют и другие значения, см. Каменский сельсовет. Сельское поселение России (МО 2-го уровня)Каменский сельсовет 56°11′30″ с. ш. 45°35′03″ в. д.HGЯO Страна  Россия Субъект РФ Нижегородская область Район Воротынский Включает 2 населённых пункта...

 

American musician Kalani DasBackground informationOccupation(s)PercussionistMusic TherapistEducatorInstrument(s)percussionWebsiteKalaniMusic.comMusical artist Kalani Das, also known simply as Kalani (birth name Michael Bruno), is an American classically trained percussionist, author, and educator. He has recorded percussion with numerous artists including Yanni and Suzanne Ciani, and has won several awards, including #1 Rock/Pop Percussionist through DRUM! Magazine.[1][2] He h...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Rangkaian komutasi adalah rangkaian elektronik yang digunakan untuk menghentikan kerja dari penyearah terkendali silikon. Pembuatan rangkaian ini dilandasi oleh sifat penyearah terkendali silikon yang terus bekerja meski arus pemicu sudah dihentikan. P...

 

  Batará moteado Batará moteado (Xenornis setifrons) en Nusagandi, Guna Yala, Panamá.Estado de conservaciónVulnerable (UICN 3.1)[1]​TaxonomíaReino: AnimaliaFilo: ChordataClase: AvesOrden: PasseriformesFamilia: ThamnophilidaeSubfamilia: ThamnophilinaeTribu: ThamnophiliniGénero: XenornisChapman, 1924Especie: X. setifronsChapman, 1924[2]​Distribución Distribución geográfica del batará moteado.[editar datos en Wikidata] El batará moteado[3]​ (Xenor...

 

Dutch mathematician Arjen Klaas Lenstra Arjen Klaas Lenstra (born 2 March 1956, in Groningen) is a Dutch mathematician, cryptographer and computational number theorist. He is a professor emeritus from the École Polytechnique Fédérale de Lausanne (EPFL) where he headed of the Laboratory for Cryptologic Algorithms.[1] Career He studied mathematics at the University of Amsterdam. He is a former professor at the EPFL (Lausanne), in the Laboratory for Cryptologic Algorithms, and previou...

Huruf KirilZe dengan diaresis Alfabet KirilHuruf SlaviaАА́А̀А̂А̄ӒБВГҐДЂЃЕЕ́ÈЕ̂ЁЄЖЗЗ́ЅИИ́ЍИ̂ЙІЇЈКЛЉМНЊОŌПРСС́ТЋЌУУ́ У̀У̂ӮЎФХЦЧЏШЩЪЫЬЭЮЯHuruf non-SlaviaӐА̊А̃Ӓ̄ӔӘӘ́Ә̃ӚВ̌ҒГ̑Г̣Г̌ҔӺҒ̌ӶД̌Д̣Д̆ӖЕ̄Е̃Ё̄Є̈ӁҖӜҘӞЗ̌З̱З̣ԐԐ̈ӠӢИ̃ҊӤҚӃҠҞҜК̣ԚӅԮԒӍӉҢԨӇҤО́О̀О̆О̂О̃ӦӦ̄ӨӨ̄Ө́Ө̆ӪҨԤР̌ҎҪС̣С̱Т̌Т̣ҬУ̃Ӱ Ӱ́Ӱ̄ӲҮҮ́ҰХ̣Х̱Х̮...

 

2022 concert tour by Little Mix The Confetti TourTour by Little MixLocation Ireland United Kingdom Associated albumConfettiStart date9 April 2022 (2022-04-09)End date14 May 2022 (2022-05-14)Legs1No. of shows25Supporting act(s)Denis ColemanSince SeptemberAttendance88,000 (6 shows)[1]Box office$6,226,612 (6 shows)[1]Little Mix concert chronology LM5: The Tour (2019) The Confetti Tour (2022) The Confetti Tour was the seventh concert tour held by Brit...

 

Sporting event delegationMaldives at the2023 World Aquatics ChampionshipsFlag of MaldivesFINA codeMDVNational federationSwimming Association of MaldivesWebsiteswimming.org.mvin Fukuoka, JapanCompetitors4 in 1 sportMedals Gold 0 Silver 0 Bronze 0 Total 0 World Aquatics Championships appearances197319751978198219861991199419982001200320052007200920112013201520172019202220232024 Maldives is set to compete at the 2023 World Aquatics Championships in Fukuoka, Japan from 14 to 30 July. Swimming Mai...

Grade of crude oil used as a benchmark in oil pricing Spot price of West Texas intermediate in relation to the price of Brent crude WTI crude oil price (daily) Price of oil adjusted for inflationPrice of oil (nominal)West Texas Intermediate oil price history 1946–2022[1] West Texas Intermediate (WTI) is a grade or mix of crude oil; the term is also used to refer to the spot price, the futures price, or assessed price for that oil. In colloquial usage, WTI usually refers to the WTI C...

 

Application of Microsoft windows This article is about the built-in Windows application. For the now defunct free downloadable Microsoft mail and calendar client, see Windows Live Mail. CalendarCalendar running on Windows 10, using the light themeDeveloper(s)MicrosoftOperating systemMicrosoft WindowsPredecessorWindows Live MailTypeElectronic calendar Calendar is a personal calendar application made by Microsoft for Microsoft Windows. It offers synchronization of calendars using Microsoft Exch...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!