Scaled inverse chi-squared distribution

Scaled inverse chi-squared
Probability density function
Cumulative distribution function
Parameters
Support
PDF
CDF
Mean for
Mode
Variance for
Skewness for
Excess kurtosis for
Entropy

MGF
CF

The scaled inverse chi-squared distribution , where is the scale parameter, equals the univariate inverse Wishart distribution with degrees of freedom .

This family of scaled inverse chi-squared distributions is linked to the inverse-chi-squared distribution and to the chi-squared distribution:

If then as well as and .

Instead of , the scaled inverse chi-squared distribution is however most frequently parametrized by the scale parameter and the distribution is denoted by .


In terms of the above relations can be written as follows:

If then as well as and .


This family of scaled inverse chi-squared distributions is a reparametrization of the inverse-gamma distribution.

Specifically, if

  then  


Either form may be used to represent the maximum entropy distribution for a fixed first inverse moment and first logarithmic moment .

The scaled inverse chi-squared distribution also has a particular use in Bayesian statistics. Specifically, the scaled inverse chi-squared distribution can be used as a conjugate prior for the variance parameter of a normal distribution. The same prior in alternative parametrization is given by the inverse-gamma distribution.

Characterization

The probability density function of the scaled inverse chi-squared distribution extends over the domain and is

where is the degrees of freedom parameter and is the scale parameter. The cumulative distribution function is

where is the incomplete gamma function, is the gamma function and is a regularized gamma function. The characteristic function is

where is the modified Bessel function of the second kind.

Parameter estimation

The maximum likelihood estimate of is

The maximum likelihood estimate of can be found using Newton's method on:

where is the digamma function. An initial estimate can be found by taking the formula for mean and solving it for Let be the sample mean. Then an initial estimate for is given by:

Bayesian estimation of the variance of a normal distribution

The scaled inverse chi-squared distribution has a second important application, in the Bayesian estimation of the variance of a Normal distribution.

According to Bayes' theorem, the posterior probability distribution for quantities of interest is proportional to the product of a prior distribution for the quantities and a likelihood function:

where D represents the data and I represents any initial information about σ2 that we may already have.

The simplest scenario arises if the mean μ is already known; or, alternatively, if it is the conditional distribution of σ2 that is sought, for a particular assumed value of μ.

Then the likelihood term L2|D) = p(D2) has the familiar form

Combining this with the rescaling-invariant prior p(σ2|I) = 1/σ2, which can be argued (e.g. following Jeffreys) to be the least informative possible prior for σ2 in this problem, gives a combined posterior probability

This form can be recognised as that of a scaled inverse chi-squared distribution, with parameters ν = n and τ2 = s2 = (1/n) Σ (xi-μ)2

Gelman and co-authors remark that the re-appearance of this distribution, previously seen in a sampling context, may seem remarkable; but given the choice of prior "this result is not surprising."[1]

In particular, the choice of a rescaling-invariant prior for σ2 has the result that the probability for the ratio of σ2 / s2 has the same form (independent of the conditioning variable) when conditioned on s2 as when conditioned on σ2:

In the sampling-theory case, conditioned on σ2, the probability distribution for (1/s2) is a scaled inverse chi-squared distribution; and so the probability distribution for σ2 conditioned on s2, given a scale-agnostic prior, is also a scaled inverse chi-squared distribution.

Use as an informative prior

If more is known about the possible values of σ2, a distribution from the scaled inverse chi-squared family, such as Scale-inv-χ2(n0, s02) can be a convenient form to represent a more informative prior for σ2, as if from the result of n0 previous observations (though n0 need not necessarily be a whole number):

Such a prior would lead to the posterior distribution

which is itself a scaled inverse chi-squared distribution. The scaled inverse chi-squared distributions are thus a convenient conjugate prior family for σ2 estimation.

Estimation of variance when mean is unknown

If the mean is not known, the most uninformative prior that can be taken for it is arguably the translation-invariant prior p(μ|I) ∝ const., which gives the following joint posterior distribution for μ and σ2,

The marginal posterior distribution for σ2 is obtained from the joint posterior distribution by integrating out over μ,

This is again a scaled inverse chi-squared distribution, with parameters and .

  • If then
  • If (Inverse-chi-squared distribution) then
  • If then (Inverse-chi-squared distribution)
  • If then (Inverse-gamma distribution)
  • Scaled inverse chi square distribution is a special case of type 5 Pearson distribution

References

  • Gelman, Andrew; et al. (2014). Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. p. 583. ISBN 978-1-4398-4095-5.
  1. ^ Gelman, Andrew; et al. (2014). Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. p. 65. ISBN 978-1-4398-4095-5.

Read other articles:

1954 film by Arthur Lubin Francis Joins the WACSVHS coverDirected byArthur LubinWritten byDevery FreemanJames B. AllardiceDorothy Davenport (add. dialogue)David Stern (characters)Based onstory Mr WAC by Herbert BakerProduced byTed RichmondStarringDonald O'ConnorJulie AdamsMamie Van DorenChill WillsCinematographyIrving GlassbergEdited byTed KentMusic byIrving GertzHenry ManciniFrank SkinnerProductioncompanyUniversal PicturesDistributed byUniversal-InternationalRelease date July 30, 1...

 

Political party in Argentina This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (October 2019) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and rem...

 

Bóng đá tại Đại hội Thể thao châu Á 2010Địa điểmSân vận động Hoa ĐôSân vận động Anh ĐôngSân vận động Nhân dân Quảng ĐôngTrung tâm Thể thao Hoàng BộSân vận động Việt Tú SơnSân vận động Thiên HàSân vận động Đại học Thành phố Quảng ChâuNgày7–25 tháng 11Vận động viên602 từ 24 quốc gia← 20062014 → Bóng đá tại Đại hội Thể thao châu Á 2010 được t

Elverum Municipio Vista de Leiret, la calle principal de Elverum Escudo ElverumLocalización de Elverum en Noruega Localización de Elverum en HedmarkCoordenadas 60°53′00″N 11°34′00″E / 60.883333, 11.566667Capital ElverumIdioma oficial Noruego neutralEntidad Municipio • País  Noruega • Provincia Hedmark • Distrito ØsterdalenAlcalde Erik Hanstad (H)Superficie   • Total 1229.34 km² • Tierra 1229,28 km² (masa de...

 

American businessman (1924–2023) Charles Munger redirects here. For the American politician, see Charles Henry Munger. Charlie MungerMunger in 2010BornCharles Thomas Munger(1924-01-01)January 1, 1924Omaha, Nebraska, U.S.DiedNovember 28, 2023(2023-11-28) (aged 99)Santa Barbara, California, U.S.EducationUniversity of MichiganCalifornia Institute of TechnologyHarvard University (JD)OccupationsBusinessmaninvestorlawyerphilanthropistfinancial analystKnown forVice Chairman, Berkshire Ha...

 

Fetal Bovine Serum salah satu bahan dasar media DMEM Media DMEM (Dulbecco’s modified eagle medium) merupakan medium basal yang terdiri dari vitamin, asam amino, garam, glukosa, dan pH indikator.[1] Namun, media ini tidak mengandung protein atau agen penumbuh.[1] Media ini membutuhkan suplementasi untuk menjadi medium yang lengkap.[1] Umumnya media ini disuplementasi dengan 5-10% Fetal Bovine Serum (FBS).[1] Selain itu, DMEM juga membentuk sistem buffer sodium...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2021) كانت جرائم الحرب الإيطالية مرتبطة بصورة رئيسة بإيطاليا الفاشية في إخماد الثورة الليبية، والحرب الإيطالية الإثيوبية الثانية، والحرب الأهلية الإسبانية، وال...

 

Consulate-General of France in Saint PetersburgГенеральное Консульство Франции в Санкт-ПетербургеGeneral'noe Konsul'stvo frantsii v Sankt-PeterburgeConsulat Général de France à Saint-PétersbourgLocationSaint PetersburgAddress15 Moika River EmbankmentCoordinates59°56′32.67959″N 30°19′24.2106″E / 59.9424109972°N 30.323391833°E / 59.9424109972; 30.323391833 The Consulate-General of France in Saint Petersburg is ...

 

Academic journalAnnual Review of PhysiologyDisciplinePhysiologyLanguageEnglishEdited byMark T. NelsonKenneth WalshPublication detailsHistory1939–presentPublisherAnnual Reviews (US)FrequencyAnnuallyOpen accessSubscribe to Open[1]Impact factor18.2[2] (2022)Standard abbreviationsISO 4 (alt) · Bluebook (alt1 · alt2)NLM (alt) · MathSciNet (alt )ISO 4Annu. Rev. Physiol.IndexingCODEN (alt · alt2) · ...

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) The topic of this article may not meet Wikipedia's notability guideline for sports ...

 

Pocket RockersTypePortable audio playerCompanyFisher-PriceCountryUnited StatesAvailability1988–1991 Pocket Rockers was a brand of personal stereo produced by Fisher-Price in the late 1980s, aimed at elementary school-age children.[1] They played a proprietary variety of miniature cassette (appearing to be a smaller version of the 8-track tape) which was released only by Fisher-Price themselves. Designed to be as much of a fashion accessory as a music player, the devices were enough ...

 

Arachosia and the Pactyans during the 1st millennium BC Garis Durand (bahasa Pashtun: د ډیورنډ کرښه) adalah batas internasional sepanjang 2,430-kilometer (1,510 mi) yang memisahkan antara Pakistan dan Afghanistan. Garis ini diberlakukan sejak tahun 1896 antara Sir Mortimer Durand, seorang diplomat Inggris dan pegawai negeri sipil British India, dan Abdur Rahman Khan, Amir Afghanistan untuk memperjelas batas untuk memperbaiki batas bidang masing-masing dari pengaruh dan men...

العلاقات الآيسلندية الهايتية آيسلندا هايتي   آيسلندا   هايتي تعديل مصدري - تعديل   العلاقات الآيسلندية الهايتية هي العلاقات الثنائية التي تجمع بين آيسلندا وهايتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة ...

 

Policy requiring or recommending Open Access to scientific publications Open-access policy redirects here. Not to be confused with Open educational resources policy. An open-access mandate is a policy adopted by a research institution, research funder, or government which requires or recommends researchers—usually university faculty or research staff and/or research grant recipients—to make their published, peer-reviewed journal articles and conference papers open access (1) by self-archi...

 

PictoncittàPicton – Veduta LocalizzazioneStato Australia Stato federato Nuovo Galles del Sud Local government areaContea di Wollondilly TerritorioCoordinate34°10′54″S 150°36′04″E / 34.181667°S 150.601111°E-34.181667; 150.601111 (Picton)Coordinate: 34°10′54″S 150°36′04″E / 34.181667°S 150.601111°E-34.181667; 150.601111 (Picton) Altitudine161 m s.l.m. Abitanti5 282[1] (2021) Altre informazioniCo...

Belgian long-distance runner Hanna VandenbusschePersonal informationNationalityBelgianBorn (1987-07-03) 3 July 1987 (age 36)SportSportAthleticsEventMarathon Hanna Vandenbussche (born 3 July 1987) is a Belgian athlete.[1] She competed in the women's marathon event at the 2019 World Athletics Championships.[2] References ^ Hanna Vandenbussche. IAAF. Retrieved 28 September 2019. ^ Marathon Women - Final (PDF). IAAF (Doha 2019). Retrieved 28 September 2019. External links Han...

 

У этого термина существуют и другие значения, см. Ёж (значения). Обыкновенный ёж Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстноротые...

 

Organisasi Hitam (黒の組織code: ja is deprecated , kuro no soshiki) atau Organisasi Berbaju Hitam (Inggris: Black Organizationcode: en is deprecated , disingkat: BO) adalah sebuah organisasi yang berperan sebagai antagonis utama dalam serial anime/manga Detektif Conan. Organisasi ini melakukan tindakan kriminal untuk berbagai alasan, dari pemerasan, pencurian, hingga pembunuhan. Organisasi ini bekerja dengan sangat teliti sehingga hampir tidak ada barang bukti yang dapat menunjukkan bahwa...

You can help expand this article with text translated from the corresponding article in Lithuanian. (December 2010) Click [show] for important translation instructions. View a machine-translated version of the Lithuanian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the Engli...

 

Micro-CapOriginal author(s)Andy Thompson, Tim O'Brien, Bill SteeleDeveloper(s)Spectrum SoftwareInitial releaseSeptember 1982;41 years ago (1982-09)Final release12.2.0.5 / June 17, 2021; 2 years ago (2021-06-17) Operating systemWindows 2K, XP, Vista, 7, 8, 8.1, 10PlatformIA-32, x86-64Size58 MBAvailable inEnglishTypeElectronic design automationLicenseFreewareWebsiteWebsite archive Micro-Cap[1] is a SPICE compatible analog/digital circuit simulator wi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!