Beta prime distribution

Beta prime
Probability density function
Cumulative distribution function
Parameters shape (real)
shape (real)
Support
PDF
CDF where is the incomplete beta function
Mean if
Mode
Variance if
Skewness if
Excess kurtosis if
Entropy where is the digamma function.
MGF Does not exist
CF

In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind[1]) is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution.

Definitions

Beta prime distribution is defined for with two parameters α and β, having the probability density function:

where B is the Beta function.

The cumulative distribution function is

where I is the regularized incomplete beta function.

While the related beta distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed as a probability, the beta prime distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed in odds. The distribution is a Pearson type VI distribution.[1]

The mode of a variate X distributed as is . Its mean is if (if the mean is infinite, in other words it has no well defined mean) and its variance is if .

For , the k-th moment is given by

For with this simplifies to

The cdf can also be written as

where is the Gauss's hypergeometric function 2F1 .

Alternative parameterization

The beta prime distribution may also be reparameterized in terms of its mean μ > 0 and precision ν > 0 parameters ([2] p. 36).

Consider the parameterization μα/(β − 1) and νβ − 2, i.e., αμ(1 + ν) and β = 2 + ν. Under this parameterization E[Y] = μ and Var[Y] = μ(1 + μ)/ν.

Generalization

Two more parameters can be added to form the generalized beta prime distribution :

  • shape (real)
  • scale (real)

having the probability density function:

with mean

and mode

Note that if p = q = 1 then the generalized beta prime distribution reduces to the standard beta prime distribution.

This generalization can be obtained via the following invertible transformation. If and for , then .

Compound gamma distribution

The compound gamma distribution[3] is the generalization of the beta prime when the scale parameter, q is added, but where p = 1. It is so named because it is formed by compounding two gamma distributions:

where is the gamma pdf with shape and inverse scale .

The mode, mean and variance of the compound gamma can be obtained by multiplying the mode and mean in the above infobox by q and the variance by q2.

Another way to express the compounding is if and , then . This gives one way to generate random variates with compound gamma, or beta prime distributions. Another is via the ratio of independent gamma variates, as shown below.

Properties

  • If then .
  • If , and , then .
  • If then .
  • If , then . This property can be used to generate beta prime distributed variates.
  • If , then . This is a corollary from the property above.
  • If has an F-distribution, then , or equivalently, .
  • For gamma distribution parametrization I:
    • If are independent, then . Note are all scale parameters for their respective distributions.
  • For gamma distribution parametrization II:
    • If are independent, then . The are rate parameters, while is a scale parameter.
    • If and , then . The are rate parameters for the gamma distributions, but is the scale parameter for the beta prime.
  • the Dagum distribution
  • the Singh–Maddala distribution.
  • the log logistic distribution.
  • The beta prime distribution is a special case of the type 6 Pearson distribution.
  • If X has a Pareto distribution with minimum and shape parameter , then .
  • If X has a Lomax distribution, also known as a Pareto Type II distribution, with shape parameter and scale parameter , then .
  • If X has a standard Pareto Type IV distribution with shape parameter and inequality parameter , then , or equivalently, .
  • The inverted Dirichlet distribution is a generalization of the beta prime distribution.
  • If , then has a generalized logistic distribution. More generally, if , then has a scaled and shifted generalized logistic distribution.
  • If , then follows a Cauchy distribution, which is equivalent to a student-t distribution with the degrees of freedom of 1.

Notes

  1. ^ a b Johnson et al (1995), p 248
  2. ^ Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021). "A new regression model for positive random variables with skewed and long tail". Metron. 79: 33–55. doi:10.1007/s40300-021-00203-y. S2CID 233534544.
  3. ^ Dubey, Satya D. (December 1970). "Compound gamma, beta and F distributions". Metrika. 16: 27–31. doi:10.1007/BF02613934. S2CID 123366328.

References

  • Johnson, N.L., Kotz, S., Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2 (2nd Edition), Wiley. ISBN 0-471-58494-0
  • Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021), "A new regression model for positive random variables with skewed and long tail", Metron, 79: 33–55, doi:10.1007/s40300-021-00203-y, S2CID 233534544


Read other articles:

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: HLS色空間 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2019年1月) HLS色空間(エイチエルエスいろくうかん)とは、

 

Penduduk menyebrangi perbatasan Kongo-Rwanda (2001) Perang Kongo Kedua, juga disebut Perang Dunia di Afrika[1] dan Perang Besar Afrika, terjadi pada tahun 1998 sampai tahun 2003 di Republik Demokratik Kongo (sebelumnya disebut Zaire). Perang ini merupakan perang terbesar dalam sejarah Afrika modern. Perang ini secara langsung melibatkan delapan negara Afrika, dan 25 grup bersenjata. Pada tahun 2008, perang ini telah membunuh 5.4 juta penduduk, kebanyakan akibat kelaparan dan penyakit,...

 

Федотоворос. Федотово/Кипелово ІАТА: немає  • ICAO: XLWFЗагальні дані 59°11′17″ пн. ш. 39°07′23″ сх. д. / 59.18833333002777408° пн. ш. 39.12333333002777636° сх. д. / 59.18833333002777408; 39.12333333002777636Координати: 59°11′17″ пн. ш. 39°07′23″ сх. д. / 59.18833333002777408° ...

Опис Військово-історичний комплекс Михайлівська батарея (Севастополь) Джерело власний архів Час створення 4.07.2010 Автор зображення Олексій Бессарабов Ліцензія Цей твір поширюється на умовах ліцензії Creative Commons Attribution-Share Alike 1.0. Коротко: ви можете вільно поширювати ...

 

One World Trade Center (One WTC) El One World Trade Center visto desde el 4 World Trade Center se puede ver el 7 World Trade CenterLocalizaciónPaís Estados UnidosUbicación  Nueva York,  Estados UnidosDirección Calle Fulton (285)Coordenadas 40°42′47″N 74°00′49″O / 40.713, -74.0135Información generalNombres anteriores Torre de la Libertad (Freedom Tower)Estado CompletadoUsos Oficinas, comunicación y observaciónEstilo arquitectura posmodernaParte d...

 

Pencak silat padaPekan Olahraga Nasional XIX Seni Putra Putri   Tunggal     Tunggal     Ganda Ganda Regu Regu Tanding Putra Putri   Kelas A     Kelas A     Kelas B Kelas B Kelas C Kelas C Kelas D Kelas D Kelas E Kelas E Kelas F Kelas F Kelas G Kelas H Kelas I Pencak silat kelas F putra pada Pekan Olahraga Nasional XIX dilaksanakan pada tanggal 19 sampai 24 september 2016 di Graha Laga Satria, ITB Jatinangor,Kabupaten Sumedang, Jawa Barat.[...

1987 video by Bon JoviSlippery When Wet: The VideosVideo by Bon JoviReleased1987Recorded1986 - 1987GenreRockLength40 minutesLabelMercuryBon Jovi chronology Breakout: Video Singles(1985) Slippery When Wet: The Videos(1987) New Jersey: The Videos(1989) Slippery When Wet: The Videos is a VHS release featuring all the videos from Bon Jovi's breakthrough third album, Slippery When Wet, together with interviews and backstage footage. Track listing Wild in the Streets Livin' on a Prayer (Liv...

 

2005 Polish parliamentary election ← 2001 25 September 2005 2007 → All 460 seats in the Sejm 231 seats were needed for a majority in the Sejm All 100 seats in the SenateTurnout40.57%   First party Second party Third party   Leader Jarosław Kaczyński Donald Tusk Andrzej Lepper Party PiS PO SRP Leader since 18 January 2003 1 June 2003 10 January 1992 Leader's seat 19 – Warsaw I 25 – Gdansk 40 – Koszalin Last election 44 seats, 9.5% 65 seats...

 

2013 Women's Club World ChampionshipTournament detailsHost nationSwitzerlandDates9–13 OctoberTeams6Venue(s)Saalsporthalle (in Zurich host cities)Champions Vakıfbank Istanbul (1st title)Tournament awardsMVP Jovana Brakočević (Vakıfbank Istanbul)Official websitefivb.org← PreviousNext → The 2013 FIVB Women's Club World Championship was the 7th edition of the event. It was held in Zurich, Switzerland, from 9 to 13 October 2013. Vakıfbank Istanbul won the title and Jovana Brakočev...

Hong Kong broadcaster and politician In this Chinese name, the family name is Tam. Tam Tak-chi譚得志Vice Chairman of the People PowerIn officeMay 2016 – December 2021Preceded byYan Sun-kong Personal detailsBorn (1973-02-02) 2 February 1973 (age 50)British Hong KongPolitical partyPeople PowerAlma materChinese University of Hong KongOccupationPresenterRadio commentatorPolitician Tam Tak-chi (Chinese: 譚得志; Jyutping: taam4 dak1 zi3; born 2 February 1973), also cal...

 

22°23′21.4″N 114°11′40.1″E / 22.389278°N 114.194472°E / 22.389278; 114.194472 Grammar, secondary schoolShatin Pui Ying College沙田培英中學View of the schoolAddress9 Fung Shun Street,Wo Che Estate,Sha Tin, NT, Hong KongInformationTypeGrammar, SecondaryMottoFaith, Hope, LoveEstablished1978School districtSha TinPrincipalMs Chan Lai FanFacultyaround 70GradesF1 to F6GenderCo-educationalEnrollmentaround 1200Colour(s)White and greenMascotEagleAffiliationChri...

 

Graph of how much of something a consumer would buy at a certain price An example of a demand curve shifting. D1 and D2 are alternative positions of the demand curve, S is the supply curve, and P and Q are price and quantity respectively. The shift from D1 to D2 means an increase in demand with consequences for the other variables A demand curve is a graph depicting the inverse demand function,[1] a relationship between the price of a certain commodity (the y-axis) and the quantity of...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Nicolás Franco Director general de Marina civil 8 de octubre-18 de diciembre de 1935 Secretario general del Jefe del Estado 2 de octubre de 1936-30 de enero de 1938 Embajador de España en Portugal 28 de feb. de 1938-10 de enero de 1958 Información personalNacimiento 1 de julio de 1891Ferrol, EspañaFallecimiento 15 de abril de 1977 (85 años)Madrid, EspañaNacionalidad EspañolaReligión Catolicismo FamiliaPadres Nicolás Franco Salgado-Araújo María del Pilar BahamondeCónyuge Isabe...

 

Canadian television series This article is about the animated TV series. For the book series, see Grossology (books). GrossologyGenreActionAdventureComedyScience fantasyCreated bySylvia BranzeiDeveloped bySimon Racioppa & Richard ElliottVoices ofKrystal MeadowsMichael CohenM. Christian HeywoodPaul O'SullivanComposerPaul IntsonCountry of originCanadaNo. of seasons2No. of episodes52ProductionExecutive producersScott DyerDoug MurphyMichael YanoverSandra ItkoffProducerMicheal DecsiRunning tim...

Overview of immigration to Brazil European and Levantine countries with significant emigration to Brazil, 1820 to 1980. Monument to the immigrant in Caxias do Sul reading: The Brazilian nation to the immigrant (Portuguese: A nação brasileira ao imigrante) Portuguese descendants in Santos. Italian descendants in São Paulo. Italian regional immigration to Brazil, which has the most people of Italian origin outside Italy. Unlike other countries with Italian immigrants, Brazil prioritized Nort...

 

1964 studio album by Milt JacksonJazz 'n' SambaStudio album by Milt JacksonReleased1964RecordedAugust 6 & 7, 1964StudioVan Gelder Studio, Englewood Cliffs, NJGenreJazzLength33:31LabelImpulse!ProducerBob ThieleMilt Jackson chronology The Modern Jazz Quartet Plays George Gershwin's Porgy and Bess(1964) Jazz 'n' Samba(1964) In a New Setting(1964) Jazz 'n' Samba is an album by American jazz vibraphonist Milt Jackson featuring performances recorded in 1964 for the Impulse! label.[1...

 

2009 non-fiction book For the practice, see human enhancement. The topic of this article may not meet Wikipedia's notability guideline for books. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Human Enhancement – news · n...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Battle of the Abas – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this template message) Battle of the AbasPart of the Third Mithridatic WarDate65 BCLocationAlazani, Caucasian AlbaniaResult Roman victoryBelligerents Roman Republic Kingdom of AlbaniaCommanders and...

 

Village and community in Flintshire, Wales Human settlement in WalesNorthop HallWelsh: Neuadd LlaneurgainSt. Mary's Church, Northop HallNorthop HallLocation within FlintshirePopulation1,530 (2011 Census)OS grid referenceSJ275677Principal areaFlintshirePreserved countyClwydCountryWalesSovereign stateUnited KingdomPost townMOLDPostcode districtCH7Dialling code01244PoliceNorth WalesFireNorth WalesAmbulanceWelsh UK ParliamentDelynSenedd Cymru – Welsh...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!