Its cumulative distribution function is continuous everywhere but horizontal almost everywhere, so is sometimes referred to as the Devil's staircase, although that term has a more general meaning.
Characterization
The support of the Cantor distribution is the Cantor set, itself the intersection of the (countably infinitely many) sets:
The Cantor distribution is the unique probability distribution for which for any Ct (t ∈ { 0, 1, 2, 3, ... }), the probability of a particular interval in Ct containing the Cantor-distributed random variable is identically 2−t on each one of the 2t intervals.
Moments
It is easy to see by symmetry and being bounded that for a random variableX having this distribution, its expected value E(X) = 1/2, and that all odd central moments of X are 0.
The law of total variance can be used to find the variance var(X), as follows. For the above set C1, let Y = 0 if X ∈ [0,1/3], and 1 if X ∈ [2/3,1]. Then:
From this we get:
A closed-form expression for any even central moment can be found by first obtaining the even cumulants[1]
^Morrison, Kent (1998-07-23). "Random Walks with Decreasing Steps"(PDF). Department of Mathematics, California Polytechnic State University. Archived from the original(PDF) on 2015-12-02. Retrieved 2007-02-16.
Further reading
Hewitt, E.; Stromberg, K. (1965). Real and Abstract Analysis. Berlin-Heidelberg-New York: Springer-Verlag. This, as with other standard texts, has the Cantor function and its one sided derivates.
Hu, Tian-You; Lau, Ka Sing (2002). "Fourier Asymptotics of Cantor Type Measures at Infinity". Proc. AMS. Vol. 130, no. 9. pp. 2711–2717. This is more modern than the other texts in this reference list.
Knill, O. (2006). Probability Theory & Stochastic Processes. India: Overseas Press.
Mattilla, P. (1995). Geometry of Sets in Euclidean Spaces. San Francisco: Cambridge University Press. This has more advanced material on fractals.