where Y is a logistic random variable, X is a half-logistic random variable.
Specification
Cumulative distribution function
The cumulative distribution function (cdf) of the half-logistic distribution is intimately related to the cdf of the logistic distribution. Formally, if F(k) is the cdf for the logistic distribution, then G(k) = 2F(k) − 1 is the cdf of a half-logistic distribution. Specifically,
Probability density function
Similarly, the probability density function (pdf) of the half-logistic distribution is g(k) = 2f(k) if f(k) is the pdf of the logistic distribution. Explicitly,
References
Johnson, N. L.; Kotz, S.; Balakrishnan, N. (1994). "23.11". Continuous univariate distributions. Vol. 2 (2nd ed.). New York: Wiley. p. 150.
George, Olusegun; Meenakshi Devidas (1992). "Some Related Distributions". In N. Balakrishnan (ed.). Handbook of the Logistic Distribution. New York: Marcel Dekker, Inc. pp. 232–234. ISBN0-8247-8587-8.