Half-normal distribution

Half-normal distribution
Probability density function
Probability density function of the half-normal distribution '"`UNIQ--postMath-00000001-QINU`"'
Cumulative distribution function
Cumulative distribution function of the half-normal distribution '"`UNIQ--postMath-00000003-QINU`"'
Parameters — (scale)
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy

In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution.

Let follow an ordinary normal distribution, . Then, follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero.

Properties

Using the parametrization of the normal distribution, the probability density function (PDF) of the half-normal is given by

where .

Alternatively using a scaled precision (inverse of the variance) parametrization (to avoid issues if is near zero), obtained by setting , the probability density function is given by

where .

The cumulative distribution function (CDF) is given by

Using the change-of-variables , the CDF can be written as

where erf is the error function, a standard function in many mathematical software packages.

The quantile function (or inverse CDF) is written:

where and is the inverse error function

The expectation is then given by

The variance is given by

Since this is proportional to the variance σ2 of X, σ can be seen as a scale parameter of the new distribution.

The differential entropy of the half-normal distribution is exactly one bit less the differential entropy of a zero-mean normal distribution with the same second moment about 0. This can be understood intuitively since the magnitude operator reduces information by one bit (if the probability distribution at its input is even). Alternatively, since a half-normal distribution is always positive, the one bit it would take to record whether a standard normal random variable were positive (say, a 1) or negative (say, a 0) is no longer necessary. Thus,

Applications

The half-normal distribution is commonly utilized as a prior probability distribution for variance parameters in Bayesian inference applications.[1][2]

Parameter estimation

Given numbers drawn from a half-normal distribution, the unknown parameter of that distribution can be estimated by the method of maximum likelihood, giving

The bias is equal to

which yields the bias-corrected maximum likelihood estimator

  • The distribution is a special case of the folded normal distribution with μ = 0.
  • It also coincides with a zero-mean normal distribution truncated from below at zero (see truncated normal distribution)
  • If Y has a half-normal distribution, then (Y/σ)2 has a chi square distribution with 1 degree of freedom, i.e. Y/σ has a chi distribution with 1 degree of freedom.
  • The half-normal distribution is a special case of the generalized gamma distribution with d = 1, p = 2, a = .
  • If Y has a half-normal distribution, Y -2 has a Lévy distribution
  • The Rayleigh distribution is a moment-tilted and scaled generalization of the half-normal distribution.
  • Modified half-normal distribution[3] with the pdf on is given as , where denotes the Fox–Wright Psi function.

See also

References

  1. ^ Gelman, A. (2006), "Prior distributions for variance parameters in hierarchical models", Bayesian Analysis, 1 (3): 515–534, doi:10.1214/06-ba117a
  2. ^ Röver, C.; Bender, R.; Dias, S.; Schmid, C.H.; Schmidli, H.; Sturtz, S.; Weber, S.; Friede, T. (2021), "On weakly informative prior distributions for the heterogeneity parameter in Bayesian random‐effects meta‐analysis", Research Synthesis Methods, 12 (4): 448–474, arXiv:2007.08352, doi:10.1002/jrsm.1475, PMID 33486828, S2CID 220546288
  3. ^ Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics - Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.

Further reading

(note that MathWorld uses the parameter


Read other articles:

Межгосударственное образовательное учреждение высшего образования Российско-Армянский университет(РАУ)Հայ-Ռուսական համալսարան Год основания 1997 Тип Межгосударственный Ректор Эдвард Сандоян Студенты ~3869 Расположение  Армения, Ереван Юридический адрес ул. Овсепа Эм...

 

Menara Dömötör Menara Dömötör adalah gedung tertua di Szeged, Hungaria. Fondasinya kemungkinan dipasang pada abad ke-11, sementara bagian bawah menara ini dibangun dengan gaya Romanesque dari abad ke-12, dan bagian atasnya yang bergaya Gotik berasal dari abad ke-13. Menara ini pernah menjadi bagian dari Szent Dömötör templom (Gereja Santo Demetrius), tetapi kini menara ini berdiri sendiri di Alun-Alun Dóm di depan Katedral Szeged yang jauh lebih besar. Bagian atas menara ini sempat ...

 

SMA Negeri 1 BekasiInformasiJenisNegeriAkreditasiAKepala SekolahHj. Dr. Ekowati, S.Pd, M.PdJumlah kelas8 IPA (kelas X) 4 IPS (kelas X) 8 IPA (kelas XI) 4 IPS (Kelas XI) 8 IPA (Kelas XII) 4 IPS (Kelas XII) 1 AkselJurusan atau peminatanIPA dan IPSRentang kelasX IPA, X IPS, XI IPA, XI IPS, XII IPA, XII IPS, Aksel CIKurikulumKurikulum 2013Jumlah siswa± 33-36 (Kelas SBI), 24 (Kelas Aksel)StatusRintisan Sekolah Bertaraf Internasional‎NEM terendah8.477 (2013)NEM tertinggi9.507 (201...

Красноусольские минеральные источники Характеристики Тип источникаисточник  Минерализация2,2-77,5 г/л Расположение 53°55′11″ с. ш. 56°32′23″ в. д.HGЯO Страна Россия Субъект РФБашкортостан РайонГафурийский район Красноусольские минеральные источники Красно...

 

此條目主要从虚构世界自身角度描述虚构作品或元素。 (2016年3月27日)请用现实世界视角来改写本条目,使之更为清晰。 此條目需要补充更多来源。 (2010年5月5日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:潛龍諜影系列用語列表 — 网页、新闻、书籍、学术、图像),以检查网...

 

У Вікіпедії є статті про інші значення цього терміна: Лехнівка. село Лехнівка Герб Різдво-Іоано-Предтеченська церква (дер.), 1877 р.Різдво-Іоано-Предтеченська церква (дер.), 1877 р. Країна  Україна Область Київська область Район Броварський район Громада Березанська міська гр

415 미아 (서울사이버대학)Mia(Seoul Cyber Univ.) Korean nameHangul미아역Hanja彌阿驛Revised RomanizationMia-yeokMcCune–ReischauerMia-yŏk General informationLocation197-14 Mia-dong, 198 Dobongno, Gangbuk-gu, Seoul[1][2]Coordinates37°37′36″N 127°01′34″E / 37.62660°N 127.02600°E / 37.62660; 127.02600Operated bySeoul MetroLine(s)     Line 4Platforms2Tracks2ConstructionStructure typeUndergroundHistoryOpene...

 

1917 film The Piper's PriceFilm posterDirected byJoe De GrasseWritten byIda May Park (screenplay)Nancy Mann Waddel Woodrow (short story)Produced byBluebird PhotoplaysStarringDorothy PhillipsLon ChaneyWilliam StowellCinematographyKing D. GrayDistributed byUniversal PicturesRelease date January 8, 1917 (1917-01-08) Running time5 reels (50 minutes)CountryUnited StatesLanguageSilent with English intertitles The Piper's Price is a 1917 silent drama film directed by Joe De Grasse and...

 

1877 Japanese samurai revolt Satsuma RebellionPart of the Shizoku rebellionsMap of the campaignDate29 January – 24 September 1877LocationKyūshū, JapanResult Imperial victoryBelligerents  Empire of Japan Satsuma DomainCommanders and leaders Emperor Meiji Prince Arisugawa Yamagata Aritomo Kuroda Kiyotaka Tani Tateki Saigō Takamori † Kirino Toshiaki † Beppu Shinsuke † Strength 51,800 imperial army 5,054 imperial guardsmen 18,000 police 12,000 infantry 2...

French cyclist Paul PouxPoux in 2013Personal informationBorn (1984-07-09) 9 July 1984 (age 39)Angoulême, FranceHeight1.81 m (5 ft 11 in)Weight70 kg (154 lb)Team informationCurrent teamRetiredDisciplineRoadRoleRiderAmateur team2010Sojasun U23–ACNC Professional teams2010Saur–Sojasun (stagiaire)2011–2013Saur–Sojasun Paul Poux (born 9 July 1984 in Angoulême) is a French former professional road cyclist, who competed for Saur–Sojasun from 2011 to 2013...

 

Canadian concert venue This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Phoenix Concert Theatre – news · newspapers · books · scholar · JSTOR (December 2011) (Learn how and when to remove this template message) Phoenix Concert TheatreEntrance to the Phoenix.Former namesThe Diamond (1984-1991)Location410 Sherb...

 

American actor (1907–1968) Dan DuryeaDuryea as Waco Johnny Dean in Winchester '73 (1950)Born(1907-01-23)January 23, 1907White Plains, New York, U.S.DiedJune 7, 1968(1968-06-07) (aged 61)Los Angeles, California, U.S.Resting placeForest Lawn Memorial Park Cemetery, Hollywood Hills, CaliforniaOccupationActorYears active1933–1968Spouse Helen Bryan ​ ​(m. 1932; died 1967)​Children2, including Peter Duryea Dan Duryea (/ˈdʊri.eɪ/ DUURR...

American football referee (born 1952) Walt AndersonAnderson in November 2008BornWalter John Anderson (1952-09-29) September 29, 1952 (age 71)DeFuniak Springs, Florida, U.S.NationalityAmericanEducationUTHealth School of Dentistry(Doctorate of Dentistry, 1978)Sam Houston State University(Bachelor's degree, 1974)Occupation(s)NFL official (1996–2019)Coordinator of Football Officials, Big 12 (2006–present)SpouseAfshanChildren5 (1 with current wife) Walter John Anderson (born Septe...

 

Community settlement in central Israel Place in Central, IsraelKarmei Yosef כַּרְמֵי יוֹסֵף‎كرمي يوسفKarmei Yosef from Tel GezerEtymology: Yosef's VineyardsKarmei YosefCoordinates: 31°50′54″N 34°55′13″E / 31.84833°N 34.92028°E / 31.84833; 34.92028CountryIsraelDistrictCentralCouncilGezerFounded1984Founded byFormer residents of Ness Ziona and RehovotPopulation (2021)[1]1,757Websitewww.karmeyyosef.org Karmei Yosef (Hebr...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) فرقة نيتف دين معلومات عامة المهنة غناء إسلامي هادف الحياة الفنية النوع هيب هوب، ريذم أند بلوز ألات مميزة الدف، والآهات البشرية شركة الإنتاج تسجيلات جمال الأ...

Finnish rally driver (born 1968) Marcus GrönholmMarcus Grönholm in 2014Personal informationNationality FinnishBorn (1968-02-05) February 5, 1968 (age 55)Kauniainen, FinlandWorld Rally Championship recordActive years1989–2007, 2009–2010, 2019Co-driver Timo RautiainenTeamsToyota, Peugeot, FordRallies153Championships2 (2000, 2002)Rally wins30Podiums61Stage wins542Total points615First rally1989 1000 Lakes RallyFirst win2000 Swedish RallyLast win2007 Rally New ZealandLast rally2019 Rall...

 

Church of Mary Magdalene of Buda Mária Magdolna-templomFront facadeReligionAffiliationRoman CatholicYear consecrated13th centuryLocationLocationKapistran Square,[1] Várkerület District (Buda Castle District), Budapest, HungaryShown within BudapestGeographic coordinates47°30′14″N 19°01′43″E / 47.5039°N 19.0286°E / 47.5039; 19.0286ArchitectureTypeChurchStyleGothicGroundbreaking13th centuryCompletedlate-15th centuryWebsitewww.budatower.hu/en/ Mary M...

 

Aang Hamid SugandaPotret Aang Hamid Suganda sebagai Bupati Kuningan Periode ke-2 (2008–2013) Bupati Kuningan ke-22Masa jabatan4 Desember 2003 – 4 Desember 2013PresidenMegawati Soekarno PutriSusilo Bambang YudhoyonoWakilAan Suharso (2003–08)Momon Rochmana (2008–13) PendahuluArifin SetiamihardjaPenggantiUtje Hamid Suganda Informasi pribadiLahir(1942-12-15)15 Desember 1942Kuningan, IndonesiaMeninggal20 Juni 2022(2022-06-20) (umur 79)Jakarta, IndonesiaPartai politikPDI-P...

نادي محايل الاسم الكامل نادي محايل السعودي الأسماء السابقة نادي الشهيد الاسم المختصر محايل الألوان الاصفر و الاخضر و الاحمر تأسس عام 1399 هـ الملعب محايل عسير  السعودية(السعة: ألفين) البلد السعودية  الدوري دوري الدرجة الثالثة السعودي 2017-2018 المركز الاول الإدارة المالك ...

 

Lin Biao林彪 Wakil Pertama Ketua Partai Komunis TiongkokMasa jabatan1 Agustus 1966 – 13 September 1971KetuaMao Zedong PendahuluLiu ShaoqiPenggantiZhou Enlai (1973)Wakil Ketua Partai Komunis TiongkokMasa jabatan25 Mei 1958 – 13 September 1971KetuaMao ZedongWakil Utama Perdana Menteri Republik Rakyat TiongkokMasa jabatan21 Desember 1964 – 13 September 1971Perdana MenteriZhou Enlai PendahuluChen YunPenggantiDeng XiaopingWakil Perdana Menteri Republik Rakyat Tio...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!