Wigner semicircle distribution

Wigner semicircle
Probability density function
Plot of the Wigner semicircle PDF
Cumulative distribution function
Plot of the Wigner semicircle CDF
Parameters radius (real)
Support
PDF
CDF
for
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy
MGF
CF

The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution defined on the domain [−R, R] whose probability density function f is a scaled semicircle, i.e. a semi-ellipse, centered at (0, 0):

for −RxR, and f(x) = 0 if |x| > R. The parameter R is commonly referred to as the "radius" parameter of the distribution.

The distribution arises as the limiting distribution of the eigenvalues of many random symmetric matrices, that is, as the dimensions of the random matrix approach infinity. The distribution of the spacing or gaps between eigenvalues is addressed by the similarly named Wigner surmise.

General properties

Because of symmetry, all of the odd-order moments of the Wigner distribution are zero. For positive integers n, the 2n-th moment of this distribution is

In the typical special case that R = 2, this sequence coincides with the Catalan numbers 1, 2, 5, 14, etc. In particular, the second moment is R24 and the fourth moment is R48, which shows that the excess kurtosis is −1.[1] As can be calculated using the residue theorem, the Stieltjes transform of the Wigner distribution is given by

for complex numbers z with positive imaginary part, where the complex square root is taken to have positive imaginary part.[2]

The Wigner distribution coincides with a scaled and shifted beta distribution: if Y is a beta-distributed random variable with parameters α = β = 32, then the random variable 2RYR exhibits a Wigner semicircle distribution with radius R. By this transformation it is straightforward to directly compute some statistical quantities for the Wigner distribution in terms of those for the beta distributions, which are better known.[3]

The Chebyshev polynomials of the second kind are orthogonal polynomials with respect to the Wigner semicircle distribution of radius 1.[4]

Characteristic function and Moment generating function

The characteristic function of the Wigner distribution can be determined from that of the beta-variate Y:

where 1F1 is the confluent hypergeometric function and J1 is the Bessel function of the first kind.

Likewise the moment generating function can be calculated as

where I1 is the modified Bessel function of the first kind. The final equalities in both of the above lines are well-known identities relating the confluent hypergeometric function with the Bessel functions.[5]

Relation to free probability

In free probability theory, the role of Wigner's semicircle distribution is analogous to that of the normal distribution in classical probability theory. Namely, in free probability theory, the role of cumulants is occupied by "free cumulants", whose relation to ordinary cumulants is simply that the role of the set of all partitions of a finite set in the theory of ordinary cumulants is replaced by the set of all noncrossing partitions of a finite set. Just as the cumulants of degree more than 2 of a probability distribution are all zero if and only if the distribution is normal, so also, the free cumulants of degree more than 2 of a probability distribution are all zero if and only if the distribution is Wigner's semicircle distribution.

See also

References

Literature

  • Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer (2010). An introduction to random matrices. Cambridge Studies in Advanced Mathematics. Vol. 118. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511801334. ISBN 978-0-521-19452-5. MR 2670897. Zbl 1184.15023.
  • Bai, Zhidong; Silverstein, Jack W. (2010). Spectral analysis of large dimensional random matrices. Springer Series in Statistics (Second edition of 2006 original ed.). New York: Springer. doi:10.1007/978-1-4419-0661-8. ISBN 978-1-4419-0660-1. MR 2567175. Zbl 1301.60002.
  • Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1995). Continuous univariate distributions. Volume 2. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (Second edition of 1970 original ed.). New York: John Wiley & Sons, Inc. ISBN 0-471-58494-0. MR 1326603. Zbl 0821.62001.
  • Olver, Frank W. J.; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010). NIST handbook of mathematical functions. Cambridge: Cambridge University Press. ISBN 978-0-521-14063-8. MR 2723248. Zbl 1198.00002.
  • Wigner, Eugene P. (1955). "Characteristic vectors of bordered matrices with infinite dimensions". Annals of Mathematics. Second Series. 62 (3): 548–564. doi:10.2307/1970079. MR 0077805. Zbl 0067.08403.

Read other articles:

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (février 2019). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Vla-Vla Devise : « More Maiorum ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2020) لجنة التنمية الاجتماعية الأهلية بالقطيف لجنة التنمية الاجتماعية الأهلية بالقطيف‌ البلد السعودية  المقر الرئيسي القطيف،  السعودية منطقة الخدمة محافظة ا

 

Burg Hohenneuffen Burgruine Hohenneuffen Burgruine Hohenneuffen Staat Deutschland Ort Neuffen Entstehungszeit 1100–1120 Burgentyp Höhenburg Erhaltungszustand Ruine Geographische Lage 48° 33′ N, 9° 24′ O48.5555555555569.3925745.4Koordinaten: 48° 33′ 20″ N, 9° 23′ 33″ O Höhenlage 745,4 m ü. NHN Burg Hohenneuffen (Baden-Württemberg) Die Burg Hohenneuffen ist die Ruine einer großen Höhenburg oberhalb der...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2021) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. ...

 

NapoliNama lengkapSocietà Sportiva Calcio NapoliSpAJulukanPartenopeiGli Azzurri (Si Biru) I Ciucciarelli (Si Keledai Kecil)Berdiri1 Agustus 1924; 99 tahun lalu (1924-08-01) sebagai Associazione Calcio NapoliStadionStadion Diego Armando MaradonaNapoli, Italia(Kapasitas: 54.726)Pemilik Filmauro S.r.l.Presiden Aurelio De LaurentiisManajer Walter MazzarriLigaSerie A2022–2023Serie A, ke-1 dari 20 (juara)Situs webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim in...

 

Die Liste der Namen von Straßen und Plätzen in Weißwasser listet alle Straßen und Plätze innerhalb der Gemeinde Weißwasser/Oberlausitz mit einer kurzen Erläuterung auf. Die Einträge beinhalten neben Informationen zur Straßenbezeichnung, -beschreibung inklusive Fotos, Daten zur Länge und geografischen Lage. Dabei werden insbesondere Hinweise auf Besonderheiten und Sehenswürdigkeiten an der Straße oder dem Platz gegeben. Nach den aktuellen Straßen und Plätzen folgen Straßennamen,...

Republik Indonesia Serikat1949–1950 Bendera Lambang Nasional Lagu kebangsaan: Indonesia RayaPeta Republik Indonesia SerikatStatusRepublik otonom BelandaIbu kotaDjakartaBahasa yang umum digunakanBahasa IndonesiaAgama Islam Protestan Katolik Hindu Buddha DemonimOrang IndonesiaNegara bagian(tidak berdaulat) Republik Indonesia Indonesia Timur Jawa Timur Sumatra Timur Madura Pasundan Sumatera Selatan PemerintahanRepublik parlementer federalPresiden • 1949–1950 Soekarno Pe...

 

1989 science fiction novel by Dan Simmons For other uses, see Hyperion. Hyperion Paperback coverAuthorDan SimmonsCover artistGary RuddellCountryUnited StatesLanguageEnglishSeriesHyperion CantosGenreSoft science fiction/Space operaPublisherDoubledayPublication date1989Media typePrint (hardback & paperback)Pages482 (mass paperback edition)AwardsHugo Award for Best NovelLocus Award for Best Science Fiction Novel (1990)ISBN0-385-24949-7 (1st ed. hardcover)OCLC18816973Dewey Decimal81...

 

This article is about the 2001 series. For the 2018 series, see Innocent (TV series). For the 2021 Spanish series, see The Innocent (TV series). British TV series or programme The InnocentGenreCrime dramaWritten by Jan McVerry Stephen Mallatratt Directed bySarah HardingStarring Caroline Quentin Paul Rhys Clare Holman Peter O'Brien Michael Cochrane Ben Miles David Fleeshman ComposerChristopher GunningCountry of originUnited KingdomOriginal languageEnglishNo. of series1No. of episodes2Prod...

This article is about the district. For its eponymous headquarters, see Jind. District of Haryana in IndiaJind districtDistrict of HaryanaRani Talab in Bhuteshwar Temple, JindLocation in HaryanaCountryIndiaStateHaryanaDivisionHisarHeadquartersJindTehsils1. Jind 2. Julana 3. Narwana 4. Safidon 5.UchanaArea • Total2,702 km2 (1,043 sq mi)Population (2011) • Total1,334,152 • Density490/km2 (1,300/sq mi)Demographics • Literac...

 

British woman police officer Stanley wearing the armband and hat-badge of the Women's Patrols (Imperial War Museums, Q 108496). Sofia Anne Stanley (28 January 1873 – 24 September 1953) was the first female police officer and the first commander of the Metropolitan Police's Women Patrols from 1919 to 1922. Biography Early life Stanley was born Sofia Dalgairns in Palermo to the Scottish civil and mechanical engineer, David Croll Dalgairns (1839–1885) and his wife Annie Marie Christine Waygo...

 

1930 Brazilian general election 1 March 1930 Presidential election← 19261934 →   Nominee Júlio Prestes Getúlio Vargas Party PRP AL Popular vote 1,091,709 742,794 Percentage 59.39% 40.41% President before election Washington Luís PRP Elected President Júlio Prestes PRP This article is part of a series on thePolitics of Brazil Executive President (list) Luiz Inácio Lula da Silva Vice President Geraldo Alckmin Cabinet Attorney General of the Union National De...

Former heavy metal music festival This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Monsters of Rock – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this template message) Monsters of RockHawkwind playing Donington in 1982GenreHard rock, heavy metalLocation(s)Castle Doni...

 

У Вікіпедії є статті про інші значення цього терміна: Медаль «За бездоганну службу». Медаль «Ветеран прикордонних військ України» Країна  УкраїнаТип МедальСтатус не вручається Нагородження Засновано: 2002Нагороджені: Черговість Медаль «За бездоганну службу» в ПВУ I ст...

 

2008 studio album by Robin ThickeSomething ElseStudio album by Robin ThickeReleasedSeptember 30, 2008GenreR&B[1]Length50:21Label Star Trak Interscope Producer Pharrell (exec.) Robin Thicke Pro J Best Kept Secret Mark Ronson Robin Thicke chronology The Evolution of Robin Thicke(2006) Something Else(2008) Sex Therapy: The Session(2009) Singles from Something Else MagicReleased: May 20, 2008 The Sweetest LoveReleased: September 9, 2008 DreamworldReleased: March 4, 2009 Someth...

German-South African former footballer For the American chess player, see Marc Tyler Arnold. Marc Arnold Personal informationDate of birth (1970-09-19) 19 September 1970 (age 53)Place of birth Johannesburg, South AfricaHeight 1.69 m (5 ft 7 in)Position(s) MidfielderYouth career Rot-Weiß Lintorf0000–1991 Stuttgarter KickersSenior career*Years Team Apps (Gls)1991–1992 Stuttgarter Kickers 2 (0)1992–1993 Freiburger FC 26 (8)1993–1994 SSV Ulm 1846 34 (24)1994–1995 Bo...

 

Species of hummingbird Jamaican mango At Green Castle Estate, Jamaica Conservation status Least Concern (IUCN 3.1)[1] CITES Appendix II (CITES)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Clade: Strisores Order: Apodiformes Family: Trochilidae Genus: Anthracothorax Species: A. mango Binomial name Anthracothorax mango(Linnaeus, 1758) Synonyms Trochilus mango Linnaeus, 1758 The Jamaican mango (Anthracothorax mango)...

 

United States historic placeDobbin Round BarnU.S. National Register of Historic Places Show map of IowaShow map of the United StatesLocationOff County Road S52Nearest cityState Center, IowaCoordinates41°59′6″N 93°11′58″W / 41.98500°N 93.19944°W / 41.98500; -93.19944Arealess than one acreBuilt1919Built byIke IngersolAmos ThompsonMPSIowa Round Barns: The Sixty Year Experiment TRNRHP reference No.86001459[1]Added to NRHPJune 30, 1986 The Dobb...

Canadian biologist Tony J PitcherAlma materOxford UniversityKnown forFounding director: UBC Fisheries CentreFounder: Fish and FisheriesFounder: Reviews in Fish Biology and FisheriesFishing down the deep[2]Awards2003: Beverton Medal2005: Distinguished Service Award of the AFS[1]Scientific careerFieldsMarine biology, fisheries scienceInstitutionsUBC Institute for the Oceans and FisheriesUniversity of British ColumbiaPeter Wall Institute for Advanced Studies Tony J Pitc...

 

École supérieure de commerce de LilleÉcole supérieure de commerce de LilleHistoireFondation 1892Dissolution 2009StatutType Établissement privé d'enseignement supérieurNom officiel École supérieure de commerce de Lille (1892)ESC Lille - Graduate school of Management (1999)SKEMA Business School (2009)Devise « Your future - our ambition »Membre de École centrale de LilleSite web www.skema-bs.fr/frLocalisationPays FranceVille Lille, ParisLocalisation sur la carte de FranceLo...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!