Family of lifetime distributions with decreasing failure rate
Exponential-Logarithmic distribution (EL)
Probability density function
Parameters
p
∈ ∈ -->
(
0
,
1
)
{\displaystyle p\in (0,1)}
β β -->
>
0
{\displaystyle \beta >0}
Support
x
∈ ∈ -->
[
0
,
∞ ∞ -->
)
{\displaystyle x\in [0,\infty )}
PDF
1
− − -->
ln
-->
p
× × -->
β β -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
{\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}
CDF
1
− − -->
ln
-->
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
)
ln
-->
p
{\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}}
Mean
− − -->
polylog
(
2
,
1
− − -->
p
)
β β -->
ln
-->
p
{\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}}
Median
ln
-->
(
1
+
p
)
β β -->
{\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}}
Mode
0 Variance
− − -->
2
polylog
(
3
,
1
− − -->
p
)
β β -->
2
ln
-->
p
{\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}}
− − -->
polylog
2
(
2
,
1
− − -->
p
)
β β -->
2
ln
2
-->
p
{\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}}
MGF
− − -->
β β -->
(
1
− − -->
p
)
ln
-->
p
(
β β -->
− − -->
t
)
hypergeom
2
,
1
{\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}}
(
[
1
,
β β -->
− − -->
t
β β -->
]
,
[
2
β β -->
− − -->
t
β β -->
]
,
1
− − -->
p
)
{\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)}
In probability theory and statistics , the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with
decreasing failure rate , defined on the interval [0, ∞). This distribution is parameterized by two parameters
p
∈ ∈ -->
(
0
,
1
)
{\displaystyle p\in (0,1)}
and
β β -->
>
0
{\displaystyle \beta >0}
.
Introduction
The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the biological and engineering sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).
The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).[ 1]
This model is obtained under the concept of population heterogeneity (through the process of
compounding).
Properties of the distribution
Distribution
The probability density function (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)[ 1]
f
(
x
;
p
,
β β -->
)
:=
(
1
− − -->
ln
-->
p
)
β β -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
{\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}
where
p
∈ ∈ -->
(
0
,
1
)
{\displaystyle p\in (0,1)}
and
β β -->
>
0
{\displaystyle \beta >0}
. This function is strictly decreasing in
x
{\displaystyle x}
and tends to zero as
x
→ → -->
∞ ∞ -->
{\displaystyle x\rightarrow \infty }
. The EL distribution has its modal value of the density at x=0, given by
β β -->
(
1
− − -->
p
)
− − -->
p
ln
-->
p
{\displaystyle {\frac {\beta (1-p)}{-p\ln p}}}
The EL reduces to the exponential distribution with rate parameter
β β -->
{\displaystyle \beta }
, as
p
→ → -->
1
{\displaystyle p\rightarrow 1}
.
The cumulative distribution function is given by
F
(
x
;
p
,
β β -->
)
=
1
− − -->
ln
-->
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
)
ln
-->
p
,
{\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}
and hence, the median is given by
x
median
=
ln
-->
(
1
+
p
)
β β -->
{\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}}
.
Moments
The moment generating function of
X
{\displaystyle X}
can be determined from the pdf by direct integration and is given by
M
X
(
t
)
=
E
(
e
t
X
)
=
− − -->
β β -->
(
1
− − -->
p
)
ln
-->
p
(
β β -->
− − -->
t
)
F
2
,
1
(
[
1
,
β β -->
− − -->
t
β β -->
]
,
[
2
β β -->
− − -->
t
β β -->
]
,
1
− − -->
p
)
,
{\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),}
where
F
2
,
1
{\displaystyle F_{2,1}}
is a hypergeometric function . This function is also known as Barnes's extended hypergeometric function . The definition of
F
N
,
D
(
n
,
d
,
z
)
{\displaystyle F_{N,D}({n,d},z)}
is
F
N
,
D
(
n
,
d
,
z
)
:=
∑ ∑ -->
k
=
0
∞ ∞ -->
z
k
∏ ∏ -->
i
=
1
p
Γ Γ -->
(
n
i
+
k
)
Γ Γ -->
− − -->
1
(
n
i
)
Γ Γ -->
(
k
+
1
)
∏ ∏ -->
i
=
1
q
Γ Γ -->
(
d
i
+
k
)
Γ Γ -->
− − -->
1
(
d
i
)
{\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}}
where
n
=
[
n
1
,
n
2
,
… … -->
,
n
N
]
{\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]}
and
d
=
[
d
1
,
d
2
,
… … -->
,
d
D
]
{\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]}
.
The moments of
X
{\displaystyle X}
can be derived from
M
X
(
t
)
{\displaystyle M_{X}(t)}
. For
r
∈ ∈ -->
N
{\displaystyle r\in \mathbb {N} }
, the raw moments are given by
E
(
X
r
;
p
,
β β -->
)
=
− − -->
r
!
Li
r
+
1
-->
(
1
− − -->
p
)
β β -->
r
ln
-->
p
,
{\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},}
where
Li
a
-->
(
z
)
{\displaystyle \operatorname {Li} _{a}(z)}
is the polylogarithm function which is defined as
follows:[ 2]
Li
a
-->
(
z
)
=
∑ ∑ -->
k
=
1
∞ ∞ -->
z
k
k
a
.
{\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.}
Hence the mean and variance of the EL distribution
are given, respectively, by
E
(
X
)
=
− − -->
Li
2
-->
(
1
− − -->
p
)
β β -->
ln
-->
p
,
{\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},}
Var
-->
(
X
)
=
− − -->
2
Li
3
-->
(
1
− − -->
p
)
β β -->
2
ln
-->
p
− − -->
(
Li
2
-->
(
1
− − -->
p
)
β β -->
ln
-->
p
)
2
.
{\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.}
The survival, hazard and mean residual life functions
Hazard function
The survival function (also known as the reliability
function) and hazard function (also known as the failure rate
function) of the EL distribution are given, respectively, by
s
(
x
)
=
ln
-->
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
)
ln
-->
p
,
{\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}
h
(
x
)
=
− − -->
β β -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
)
ln
-->
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
)
.
{\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.}
The mean residual lifetime of the EL distribution is given by
m
(
x
0
;
p
,
β β -->
)
=
E
(
X
− − -->
x
0
|
X
≥ ≥ -->
x
0
;
β β -->
,
p
)
=
− − -->
Li
2
-->
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
0
)
β β -->
ln
-->
(
1
− − -->
(
1
− − -->
p
)
e
− − -->
β β -->
x
0
)
{\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}}
where
Li
2
{\displaystyle \operatorname {Li} _{2}}
is the dilogarithm function
Random number generation
Let U be a random variate from the standard uniform distribution .
Then the following transformation of U has the EL distribution with
parameters p and β :
X
=
1
β β -->
ln
-->
(
1
− − -->
p
1
− − -->
p
U
)
.
{\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).}
Estimation of the parameters
To estimate the parameters, the EM algorithm is used. This method is discussed by Tahmasbi and Rezaei (2008).[ 1] The EM iteration is given by
β β -->
(
h
+
1
)
=
n
(
∑ ∑ -->
i
=
1
n
x
i
1
− − -->
(
1
− − -->
p
(
h
)
)
e
− − -->
β β -->
(
h
)
x
i
)
− − -->
1
,
{\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},}
p
(
h
+
1
)
=
− − -->
n
(
1
− − -->
p
(
h
+
1
)
)
ln
-->
(
p
(
h
+
1
)
)
∑ ∑ -->
i
=
1
n
{
1
− − -->
(
1
− − -->
p
(
h
)
)
e
− − -->
β β -->
(
h
)
x
i
}
− − -->
1
.
{\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.}
The EL distribution has been generalized to form the Weibull-logarithmic distribution.[ 3]
If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate parameter β , and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p ) ), then X has the exponential-logarithmic distribution in the parameterisation used above.
References
^ a b c Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", Computational Statistics and Data Analysis , 52 (8), 3889-3901. doi :10.1016/j.csda.2007.12.002
^ Lewin, L. (1981) Polylogarithms and Associated Functions , North
Holland, Amsterdam.
^ Ciumara, Roxana; Preda, Vasile (2009) "The Weibull-logarithmic distribution in lifetime analysis and its properties" . In: L. Sakalauskas, C. Skiadas and
E. K. Zavadskas (Eds.) Applied Stochastic Models and Data Analysis Archived 2011-05-18 at the Wayback Machine , The XIII International Conference, Selected papers. Vilnius, 2009 ISBN 978-9955-28-463-5
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families