Hypoexponential distribution

Hypoexponential
Parameters rates (real)
Support
PDF Expressed as a phase-type distribution

Has no other simple form; see article for details
CDF Expressed as a phase-type distribution
Mean
Median General closed form does not exist[1]
Mode if , for all k
Variance
Skewness
Excess kurtosis no simple closed form
MGF
CF

In probability theory the hypoexponential distribution or the generalized Erlang distribution is a continuous distribution, that has found use in the same fields as the Erlang distribution, such as queueing theory, teletraffic engineering and more generally in stochastic processes. It is called the hypoexponetial distribution as it has a coefficient of variation less than one, compared to the hyper-exponential distribution which has coefficient of variation greater than one and the exponential distribution which has coefficient of variation of one.

Overview

The Erlang distribution is a series of k exponential distributions all with rate . The hypoexponential is a series of k exponential distributions each with their own rate , the rate of the exponential distribution. If we have k independently distributed exponential random variables , then the random variable,

is hypoexponentially distributed. The hypoexponential has a minimum coefficient of variation of .

Relation to the phase-type distribution

As a result of the definition it is easier to consider this distribution as a special case of the phase-type distribution.[2] The phase-type distribution is the time to absorption of a finite state Markov process. If we have a k+1 state process, where the first k states are transient and the state k+1 is an absorbing state, then the distribution of time from the start of the process until the absorbing state is reached is phase-type distributed. This becomes the hypoexponential if we start in the first 1 and move skip-free from state i to i+1 with rate until state k transitions with rate to the absorbing state k+1. This can be written in the form of a subgenerator matrix,

For simplicity denote the above matrix . If the probability of starting in each of the k states is

then

Two parameter case

Where the distribution has two parameters () the explicit forms of the probability functions and the associated statistics are:[3]

CDF:

PDF:

Mean:

Variance:

Coefficient of variation:

The coefficient of variation is always less than 1.

Given the sample mean () and sample coefficient of variation (), the parameters and can be estimated as follows:

These estimators can be derived from the methods of moments by setting and .

The resulting parameters and are real values if .

Characterization

A random variable has cumulative distribution function given by,

and density function,

where is a column vector of ones of the size k and is the matrix exponential of A. When for all , the density function can be written as

where are the Lagrange basis polynomials associated with the points .

The distribution has Laplace transform of

Which can be used to find moments,

General case

In the general case where there are distinct sums of exponential distributions with rates and a number of terms in each sum equals to respectively. The cumulative distribution function for is given by

with

with the additional convention .[4]

Uses

This distribution has been used in population genetics,[5] cell biology,[6][7] and queuing theory.[8][9]

See also

References

  1. ^ "HypoexponentialDistribution". Wolfram Language & System Documentation Center. Wolfram. 2012. Retrieved 27 February 2024.
  2. ^ Legros, Benjamin; Jouini, Oualid (2015). "A linear algebraic approach for the computation of sums of Erlang random variables". Applied Mathematical Modelling. 39 (16): 4971–4977. doi:10.1016/j.apm.2015.04.013.
  3. ^ Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Trivedi, Kishor S. (2006). Queuing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2nd ed.). Wiley. pp. 24–25. doi:10.1002/0471791571. ISBN 978-0-471-79157-7.
  4. ^ Amari, Suprasad V.; Misra, Ravindra B. (1997). "Closed-form expressions for distribution of sum of exponential random variables". IEEE Transactions on Reliability. 46 (4): 519–522. doi:10.1109/24.693785.
  5. ^ Strimmer, Korbinian; Pybus, Oliver G. (2001). "Exploring the demographic history of DNA sequences using the generalized skyline plot". Molecular Biology and Evolution. 18 (12): 2298–2305. doi:10.1093/oxfordjournals.molbev.a003776. PMID 11719579.
  6. ^ Yates, Christian A.; Ford, Matthew J.; Mort, Richard L. (2017). "A multi-stage representation of cell proliferation as a Markov process". Bulletin of Mathematical Biology. 79 (12): 2905–2928. arXiv:1705.09718. doi:10.1007/s11538-017-0356-4. PMC 5709504. PMID 29030804.
  7. ^ Gavagnin, Enrico; Ford, Matthew J.; Mort, Richard L.; Rogers, Tim; Yates, Christian A. (2019). "The invasion speed of cell migration models with realistic cell cycle time distributions". Journal of Theoretical Biology. 481: 91–99. arXiv:1806.03140. doi:10.1016/j.jtbi.2018.09.010. PMID 30219568.
  8. ^ Călinescu, Malenia (August 2009). "Forecasting and capacity planning for ambulance services" (PDF). Faculty of Sciences. Vrije Universiteit Amsterdam. Archived from the original (PDF) on 15 February 2010.
  9. ^ Bekker, René; Koeleman, Paulien M. (2011). "Scheduling admissions and reducing variability in bed demand". Health Care Management Science. 14 (3): 237–249. doi:10.1007/s10729-011-9163-x. PMC 3158339. PMID 21667090.

Further reading

  • M. F. Neuts. (1981) Matrix-Geometric Solutions in Stochastic Models: an Algorthmic Approach, Chapter 2: Probability Distributions of Phase Type; Dover Publications Inc.
  • G. Latouche, V. Ramaswami. (1999) Introduction to Matrix Analytic Methods in Stochastic Modelling, 1st edition. Chapter 2: PH Distributions; ASA SIAM,
  • Colm A. O'Cinneide (1999). Phase-type distribution: open problems and a few properties, Communication in Statistic - Stochastic Models, 15(4), 731–757.
  • L. Leemis and J. McQueston (2008). Univariate distribution relationships, The American Statistician, 62(1), 45—53.
  • S. Ross. (2007) Introduction to Probability Models, 9th edition, New York: Academic Press

Read other articles:

Process of using low-energy X-rays to examine the human breast for diagnosis and screening See also: Breast cancer screening MammographyMammographyOther namesMastographyICD-10-PCSBH0ICD-9-CM87.37MeSHD008327OPS-301 code3–10MedlinePlus003380[edit on Wikidata] Mammography (also called mastography: DICOM modality = MG) is the process of using low-energy X-rays (usually around 30 kVp) to examine the human breast for diagnosis and screening. The goal of mammography is the early detection...

 

Down in the DeltaTheatrical release posterSutradara Maya Angelou Produser Rick Rosenberg Bob Christiansen Victor McGauley Wesley Snipes Ditulis oleh Myron Goble PemeranAlfre WoodardAl Freeman, Jr.Esther RolleMary AliceLoretta DevineWesley SnipesPenata musikStanley ClarkeSinematograferWilliam WagesPenyuntingNancy RichardsonDistributorMiramax FilmsTanggal rilis 05 Agustus 1998 (1998-08-05) (Urbanworld Film Festival) 17 September 1998 (1998-09-17) (Toronto Film Festival) ...

 

JO26 JB33 Stasiun Tsudanuma津田沼駅Peron 1・2 (Jalur Cepat) Stasiun Tsudanuma JR Sobu-Jalur UtamaLokasi1-Tsudanuma, Narashino-shi, Chiba-kenJepangKoordinat35°41′28″N 140°01′14″E / 35.691221°N 140.020478°E / 35.691221; 140.020478Koordinat: 35°41′28″N 140°01′14″E / 35.691221°N 140.020478°E / 35.691221; 140.020478Pengelola JR EastJalur JB Jalur Chūō-Sōbu JO Jalur Sōbu (Rapid) Jumlah peron3 peron pulauPenghubung anta...

La hija de un ladrón Ficha técnicaDirección Belén FunesDirección artística Marta BazacoProducción Antonio Chavarrías, Álex LafuenteGuion Belén Funes, Marçal CebrianSonido (sonido directo) Sergio Rueda, Dolby AtmosMaquillaje Elisa AlonsoFotografía Neus OlléMontaje Bernat AragonésVestuario Desirée GuiraoProtagonistas Greta Fernández, Eduard Fernández, Àlex Monner, Borja Espinosa, María Rodríguez Soto, Frank Keys, Jordi Reverté Ver todos los créditos (IMDb)Datos y cifrasPa...

 

Sala de Conciertos Cemal Reşit Rey Cemal Reşit Rey Konser Salonu Vista del espacioLocalizaciónPaís  TurquíaLocalidad EstambulCoordenadas 41°02′53″N 28°59′24″E / 41.04805556, 28.99Información generalTipo Sala de conciertosApertura 1989CaracterísticasAforo 860 espectadores[editar datos en Wikidata] La Sala de Conciertos Cemal Reşit Rey[1]​ (en turco: Cemal Reşit Rey Konser Salonu) es una sala de conciertos ubicada en el barrio Harbiye de E...

 

War of MoneyPoster promosi untuk War of MoneyDitulis olehLee Hyang-hee Yoo Jung-sooSutradaraJang Tae-yooPemeranPark Shin-yang Park Jin-hee Shin Dong-wook Kim Jung-hwaBahasa asliKoreaJmlh. episode20 (16 + 4)ProduksiProduserKim Young-supDurasiRabu dan Kamis pukul 21:55 (WSK)Rumah produksiVictory ProductionRilisJaringan asliSeoul Broadcasting SystemRilis asli16 Mei (2007-05-16) –19 Juli 2007 (2007-7-19)Pranala luarSitus web War of Money (Hangul: 쩐의 전쟁; RR...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2020) الإتفاقية البريطانية العراقية 1922معلومات عامةالنوع معاهدة الموقعون بيرسي كوكس وعبد الرحمن الكيلاني النقيباللغة إنجليزيةتعديل - تعديل مصدري - تعديل ويكي بيا

 

Боевая организация анархо-коммунистов (БОАК) Дата заснування ймовірно 2018Ідеологія анархізманархо-комунізм[1]Девіз Свобода або смерть! Хай живе революция!Офіційний сайт boakmirror.noblogs.org Бойова організація анархо-комуністів (Боевая организация анархо-коммунистов БОА...

 

جائزة بريطانيا الكبرى 1960 (بالإنجليزية: XIII RAC British Grand Prix)‏  السباق 7 من أصل 10 في بطولة العالم لسباقات الفورمولا واحد موسم 1960 السلسلة بطولة العالم لسباقات فورمولا 1 موسم 1960  البلد المملكة المتحدة  التاريخ 16 يوليو 1960 مكان التنظيم حلبة سلفرستون، إنجلترا طول المسار 4.711 كي

Laksamana Merah tampak dorsal tampak ventral Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Lepidoptera Famili: Nymphalidae Genus: Vanessa Spesies: V. atalanta Nama binomial Vanessa atalanta(Linnaeus, 1758) Subspesies V. a. atalanta V. a. rubria (Fruhstorfer, 1909)[1] Sinonim Papilio atalanta Linnaeus, 1758 Pyrameis ammiralis Godart, 1821 Pyrameis atalanta Godman & Salvin, [1882] Vanessa atalanta Dyar, 1903[1] Laksamana Merah (Vanessa ata...

 

Igreja Ortodoxa Síria(Patriarcado Sírio Ortodoxo de Antioquia e Todo o Oriente) Brasão da Igreja Ortodoxa Síria de Antioquia Fundador São Pedro e São Paulo Apóstolo Independência Período Apostólico Reconhecimento Ortodoxo Oriental. 518 d.C., como Igreja distinta da Igreja Ortodoxa Grega de Antioquia (Concílio de Constantinopla). Primaz Inácio Efrém II Sede Primaz Damasco, Síria Território Oriente Médio,  Índia Posses Ao redor do mundo Língua Siríaco (língua litúrgica...

 

Italian footballer (born 1996) Andrea Compagno Compagno with FCSB in 2023Personal informationFull name Andrea CompagnoDate of birth (1996-04-22) 22 April 1996 (age 27)Place of birth Palermo, ItalyHeight 1.95 m (6 ft 5 in)Position(s) StrikerTeam informationCurrent team FCSBNumber 9Youth career2006–2011 Palermo2011–2014 Catania2016 TorinoSenior career*Years Team Apps (Gls)2014–2015 Catania 0 (0)2015 → Due Torri (loan) 14 (2)2015–2016 Pinerolo 15 (1)2016 Pinerolo 6 ...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: E. Prakasam – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message)E. Prakasam, AELCThe ReverendChurchLutheranDioceseSynods of East Godavari, West Godavari, East Guntur, West Guntur, Central GunturSeeAndhra Evangelical Lutheran Church (AELC)In office1...

 

Black and tan dog breed from Germany Doberman redirects here. For other uses, see Doberman (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dobermann – news · newspapers · books · scholar · JSTOR (March 2018) (Learn how and when to remove this template message) Dog breedDobermannAdult bitchO...

 

Service for short-term scooter rentals Motorized scooters parked for use in Columbus, Ohio Bolt scooters parked at Bema Square, Wroclaw, 2021Rules printed on the deck of a Bird scooter A scooter-sharing system is a shared transport service in which electric motorized scooters (also referred to as e-scooters) are made available to use for short-term rentals. E-scooters are typically dockless, meaning that they do not have a fixed home location and are dropped off and picked up from certain loc...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

تيند    علم شعار الاسم الرسمي (بالفرنسية: Tende)‏(بالأكستانية: Tenda)‏    الإحداثيات 44°05′16″N 7°35′37″E / 44.087777777778°N 7.5936111111111°E / 44.087777777778; 7.5936111111111[1]  [2] تقسيم إداري  البلد فرنسا[3]  التقسيم الأعلى الألب البحريةنيس  خصائص جغرافية  الم...

 

Евдем Родосский Дата рождения 370 до н. э. Место рождения Родос, Османская империя Дата смерти 300 до н. э. Место смерти Родос, Османская империя Страна  Родос Род деятельности математик, астроном, историк математики, философ, историк науки, историк Евдем ...

Human settlement in ScotlandWest SandwickWest Sandwick, Yell, with North Mainland in the backgroundWest SandwickLocation within ShetlandOS grid referenceHU450887Civil parishYellCouncil areaShetlandLieutenancy areaShetlandCountryScotlandSovereign stateUnited KingdomPost townSHETLANDPostcode districtZE2Dialling code01957PoliceScotlandFireScottishAmbulanceScottish UK ParliamentOrkney and ShetlandScottish ParliamentShetland List of places UK Scotland 6...

 

K / B B = K B B {\displaystyle K/BB={\frac {K}{BB}}} In baseball statistics, strikeout-to-walk ratio (K/BB) is a measure of a pitcher's ability to control pitches, calculated as strikeouts divided by bases on balls. A hit by pitch is not counted statistically as a walk, and therefore not counted in the strikeout-to-walk ratio. The inverse of this calculation is the related statistic for hitters, walk-to-strikeout ratio (BB/K). Leaders Single-season leader Phil Hughes (11.625 K/BB ratio). A pi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!