Wrapped normal distribution

Wrapped Normal
Probability density function
Plot of the von Mises PMF
The support is chosen to be [-π,π] with μ=0
Cumulative distribution function
Plot of the von Mises CMF
The support is chosen to be [-π,π] with μ=0
Parameters real
Support any interval of length 2π
PDF
Mean if support is on interval
Median if support is on interval
Mode
Variance (circular)
Entropy (see text)
CF

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.[1]

Definition

The probability density function of the wrapped normal distribution is[2]

where μ and σ are the mean and standard deviation of the unwrapped distribution, respectively. Expressing the above density function in terms of the characteristic function of the normal distribution yields:[2]

where is the Jacobi theta function, given by

and

The wrapped normal distribution may also be expressed in terms of the Jacobi triple product:[3]

where and

Moments

In terms of the circular variable the circular moments of the wrapped normal distribution are the characteristic function of the normal distribution evaluated at integer arguments:

where is some interval of length . The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

The mean angle is

and the length of the mean resultant is

The circular standard deviation, which is a useful measure of dispersion for the wrapped normal distribution and its close relative, the von Mises distribution is given by:

Estimation of parameters

A series of N measurements zn = e n drawn from a wrapped normal distribution may be used to estimate certain parameters of the distribution. The average of the series z is defined as

and its expectation value will be just the first moment:

In other words, z is an unbiased estimator of the first moment. If we assume that the mean μ lies in the interval [−ππ), then Arg z will be a (biased) estimator of the mean μ.

Viewing the zn as a set of vectors in the complex plane, the R2 statistic is the square of the length of the averaged vector:

and its expected value is:

In other words, the statistic

will be an unbiased estimator of eσ2, and ln(1/Re2) will be a (biased) estimator of σ2

Entropy

The information entropy of the wrapped normal distribution is defined as:[2]

where is any interval of length . Defining and , the Jacobi triple product representation for the wrapped normal is:

where is the Euler function. The logarithm of the density of the wrapped normal distribution may be written:

Using the series expansion for the logarithm:

the logarithmic sums may be written as:

so that the logarithm of density of the wrapped normal distribution may be written as:

which is essentially a Fourier series in . Using the characteristic function representation for the wrapped normal distribution in the left side of the integral:

the entropy may be written:

which may be integrated to yield:

See also

References

  1. ^ Collett, D.; Lewis, T. (1981). "Discriminating Between the Von Mises and Wrapped Normal Distributions". Australian Journal of Statistics. 23 (1): 73–79. doi:10.1111/j.1467-842X.1981.tb00763.x.
  2. ^ a b c Mardia, Kantilal; Jupp, Peter E. (1999). Directional Statistics. Wiley. ISBN 978-0-471-95333-3.
  3. ^ Whittaker, E. T.; Watson, G. N. (2009). A Course of Modern Analysis. Book Jungle. ISBN 978-1-4385-2815-1.

Read other articles:

State affiliate of the Libertarian Party Libertarian Party of Florida ChairpersonJosh Hlavka[1]Founded1987HeadquartersKey West, FloridaIdeologyLibertarianism Constitutionalism Fiscal conservatism Limited government Classical liberalism Non-interventionism Social tolerance National affiliationLibertarian Party (United States)ColorsA dark shade of grey or blue; golden yellowSeats in the Upper House0 / 120Seats in the Lower House0 / 40Websitelpf.orgPolitics of the United StatesPolitical ...

 

комуна Рунку-СалвейRuncu Salvei Дерев'яна церква у селі Рунку-Салвей Країна  Румунія Повіт  Бістріца-Несеуд Поштові індекси 427256 Телефонний код +40 263 (Romtelecom, TR)+40 363 (інші оператори) Координати 47°20′38″ пн. ш. 24°19′31″ сх. д.H G O Висота 412 м.н.р.м. Площа 25,61 км² Населення 1388...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Agosto de 2020) Nórdicos desembarcam na Islândia no ano 872 dC O povoamento da Islândia em islandês: landnámsöld), crê-se ter começado na segunda metade do século IX, quando os colonos nórdicos migraram ao longo do Atlântico Nor...

Cheez-It 355 at The Glen Watkins Glen International, New York Portaal    Autosport De Go Bowling at The Glen is een race uit de NASCAR Cup Series. De wedstrijd wordt gehouden op het circuit van Watkins Glen over een afstand van 220 mijl of 355 km. De eerste editie werd in 1957 gehouden en gewonnen door Buck Baker. Tony Stewart is met vijf overwinningen recordhouder van de race. Het is samen met de Toyota/Save Mart 350 een van de twee races in het kampioenschap die op een wegcir...

 

Burg Landsberg Doppelkapelle als Rest der Burg Landsberg Doppelkapelle als Rest der Burg Landsberg Staat Deutschland Ort Landsberg Entstehungszeit 1160 bis ca. 1184 Burgentyp Höhenburg auf Porphyrfelsen Erhaltungszustand Kapelle, geringe Mauerreste, Fundament des ehemaligen Bergfrieds Ständische Stellung Markgrafen, Adlige (Ministeriale) Geographische Lage 51° 32′ N, 12° 10′ O51.52559722222212.163958333333148Koordinaten: 51° 31′ 32,1″ N, 12...

 

Provincia CosteraCoast ProvinceMkoa wa Pwani Provincia Coordenadas 3°00′S 39°30′E / -3, 39.5Capital MombasaEntidad Provincia • País  KeniaSubdivisiones 7 distritosSuperficie   • Total 84113 km²Población (2007)   • Total 3 035 000 hab. • Densidad 36,08 hab/km²Huso horario UTC +3[editar datos en Wikidata] La Provincia Costera (en kiswahili: Mkoa wa Pwani) fue una de las ocho provincias en las cual...

此條目或章節是關於尚未上映的電影。未有可靠来源的臆測內容可能會被移除,當前記載或許與最後的電影成品內容有所出入。 奇美拉La chimera意大利剧院上映海报基本资料导演阿莉切·罗尔瓦赫尔监制卡洛·克雷斯托·迪纳(Carlo Cresto Dina)编剧阿莉切·罗尔瓦赫尔主演 喬許·歐康納 卡萝尔·杜阿尔特(Carol Duarte) 文森佐·内莫拉托(Vincenzo Nemolato) 艾芭·羅爾瓦雀 伊莎貝拉·...

 

1969 studio album by Jackie LomaxIs This What You Want?Studio album by Jackie LomaxReleased21 March 1969Recorded June – August 1968 October 1968 – January 1969 Studio Sound Recorders, Los Angeles EMI and Trident, London GenreRock, soulLength40:09 (UK version) 39:14 (US version)LabelAppleProducerGeorge Harrison; Jackie Lomax and Mal Evans (US version only)Jackie Lomax chronology Is This What You Want?(1969) Home Is in My Head(1971) Singles from Is This What You Want? N...

 

Logo Moji Berikut ini adalah daftar penyiar Moji. Penyiar saat ini Khusus Liputan 6 Pagi Moji, MOJI Sport dan Bisik Pagi Beverly Gunawan (juga penyiar SCTV) Rusydi Maulana (juga penyiar SCTV) Dana Paramita (mantan penyiar Kompas TV biro Jawa Tengah, sekaligus penyiar di SCTV) Ramaditya Domas (mantan penyiar BTV juga penyiar SCTV) Annura Biometa Shahnaz Aprilia Eduard Vidyadi Hannisa Sandi Verta Arlinsa Non Berita (Hiburan) Bidang Olahraga Malik Wildan Rama Sugianto Rheza Pradita Tyo Prasetyo ...

Megogo Футбол Країна  УкраїнаЧас мовлення ЦілодобовоМова мовлення українська, російська, англійськаФорматзображення 1080p (HDTV)Тематика каналу футболДата початкумовлення 14 січня 2019Власник(и) MegogoКерівник(и) Megogo СпортСайт megogo.net/tv/channels/4075301 «Мегого Футбол» — ряд платних і...

 

Василий Алексеевич Колонов Дата рождения 7 марта 1913(1913-03-07) Место рождения деревня Передельники, Ельнинский уезд, Смоленская губерния Дата смерти 22 июля 1966(1966-07-22) (53 года) Место смерти село Еткуль, Еткульский район, Челябинская область Принадлежность  СССР Род в...

 

Орнітофауна Британської території в Індійському океані ? Птахи Британської території в Індійському океаніБіорегіонФауністичне царство БіосфераБіогеографічний екорегіон ІндомалайяМісцевістьКонтинент АзіяКраїна  Велика БританіяТериторія  Британська територі...

Village development committee in Sudurpashchim Province, NepalBelapur बेलापुरVillage development committeeBelapurLocation in NepalCoordinates: 29°22′N 80°44′E / 29.37°N 80.74°E / 29.37; 80.74Country   NepalProvinceSudurpashchim ProvinceDistrictDadeldhura DistrictPopulation (1991) • Total5,285Time zoneUTC+5:45 (Nepal Time) Belapur is a village development committee in Dadeldhura District in Sudurpashchim Province of ...

 

For the soundtrack album, see It's a SpongeBob Christmas! Album. Not to be confused with Christmas Who?, the first SpongeBob Christmas special from 2000. 23rd episode of the 8th season of SpongeBob SquarePants It's a SpongeBob Christmas!SpongeBob SquarePants episodePromotional artwork for the episode depicting SpongeBob's friends singing a Christmas carol.Episode no.Season 8Episode 23Directed byMark Caballero (animation)Seamus Walsh (animation)Luke Brookshier (storyboard)Marc Ceccarelli ...

 

Perang Inggris-NepalBalbhadra Kunwar, komandan Nepal selama Perang Inggris-NepalTanggal1814–16LokasiKerajaan NepalHasil Kemenangan East India Company Traktat Sugauli ditandatangani dan menyerahkan wilayah kepada Imperium BritaniaPihak terlibat East India Company Kerajaan Garhwal Negara Patiala NepalTokoh dan pemimpin Francis Rawdon-Hastings David Ochterlony Rollo Gillespie † Bennet Marley John Sullivan Wood Girvan Yuddha Bikram Shah Deva Bhimsen Thapa Amar Singh Thapa(Bada) Ranjur Si...

  بالنثيا (بالإسبانية: Palencia)‏[1]  بالنثيا بالنثيا  خريطة الموقع تقسيم إداري البلد إسبانيا  [2][3] عاصمة لـ بَلِنثية  التقسيم الأعلى بَلِنثية  خصائص جغرافية إحداثيات 42°01′00″N 4°32′00″W / 42.016666666667°N 4.5333333333333°W / 42.016666666667; -4.5333333333333  [4] ا...

 

Commuter rail service between Nashville and Lebanon, Tennessee For the American Basketball Association team, see Music City Stars. WeGo StarThree EMD F40PH locomotives in use by the WeGo Star lined up within the Lebanon, Tennessee yards. The third F40PH on the far right is a former Amtrak locomotive painted in its original Pacific Surfliner scheme which has since been repainted as of 2020.OverviewOwnerTennessee Department of Transportation (TDOT)LocaleNashville Metropolitan AreaTransit typeCo...

 

Network of not-for-profit news media outlets The ConversationType of businessNot-for-profitType of siteAnalysis, commentary, research, newsAvailable inEnglish, French, Spanish, IndonesianFoundedApril 2010 (2010-04)HeadquartersMelbourne, Victoria, AustraliaCountry of originAustraliaArea servedAustralia, Africa, Canada, Europe, France, United Kingdom, United States, Indonesia, New Zealand, SpainFounder(s)Andrew Jaspan, Jack RejtmanEmployees150+ (2020)URLtheconversation.com/u...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Jalangkote – berita · surat kabar · buku · cendekiawan · JSTOR (Desember 2022) JalangkoteᨍᨒᨀᨚᨈᨙTempat asalIndonesiaDaerahSulawesi SelatanDibuat olehOrang Makassar dan BugisSuhu penyajianHangat ata...

 

1938 book by Richard Wright Uncle Tom's Children First edition cover with quote fromHarry SchermanAuthorRichard WrightCountryUnited StatesLanguageEnglishGenreNovellaPublisherHarper & BrothersPublication date1938 and reissued 1940.Pages317 Uncle Tom's Children is a collection of novellas and the first book published by African-American author Richard Wright, who went on to write Native Son (1940), Black Boy (1945), and The Outsider (1953). When it was first published in 1938, Uncle Tom's C...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!