Family of probability distributions often used to model tails or extreme values
This article is about a particular family of continuous distributions referred to as the generalized Pareto distribution. For the hierarchy of generalized Pareto distributions, see Pareto distribution.
In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape .[2][3] Sometimes it is specified by only scale and shape[4] and sometimes only by its shape parameter. Some references give the shape parameter as .[5]
Definition
The standard cumulative distribution function (cdf) of the GPD is defined by[6]
where the support is for and for . The corresponding probability density function (pdf) is
Characterization
The related location-scale family of distributions is obtained by replacing the argument z by and adjusting the support accordingly.
Both formulas are obtained by inversion of the cdf.
In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.
GPD as an Exponential-Gamma Mixture
A GPD random variable can also be expressed as an exponential random variable, with a Gamma distributed rate parameter.
and
then
Notice however, that since the parameters for the Gamma distribution must be greater than zero, we obtain the additional restrictions that: must be positive.
In addition to this mixture (or compound) expression, the generalized Pareto distribution can also be expressed as a simple ratio. Concretely, for and , we have . This is a consequence of the mixture after setting and taking into account that the rate parameters of the exponential and gamma distribution are simply inverse multiplicative constants.
Exponentiated generalized Pareto distribution
The exponentiated generalized Pareto distribution (exGPD)
See the right panel for the variance as a function of . Note that .
Note that the roles of the scale parameter and the shape parameter under are separably interpretable, which may lead to a robust efficient estimation for the than using the [2]. The roles of the two parameters are associated each other under (at least up to the second central moment); see the formula of variance wherein both parameters are participated.
The Hill's estimator
Assume that are observations (need not be i.i.d.) from an unknown heavy-tailed distribution such that its tail distribution is regularly varying with the tail-index (hence, the corresponding shape parameter is ). To be specific, the tail distribution is described as
It is of a particular interest in the extreme value theory to estimate the shape parameter , especially when is positive (so called the heavy-tailed distribution).
Let be their conditional excess distribution function. Pickands–Balkema–de Haan theorem (Pickands, 1975; Balkema and de Haan, 1974) states that for a large class of underlying distribution functions , and large , is well approximated by the generalized Pareto distribution (GPD), which motivated Peak Over Threshold (POT) methods to estimate : the GPD plays the key role in POT approach.
A renowned estimator using the POT methodology is the Hill's estimator. Technical formulation of the Hill's estimator is as follows. For , write for the -th largest value of . Then, with this notation, the Hill's estimator (see page 190 of Reference 5 by Embrechts et al [3]) based on the upper order statistics is defined as
In practice, the Hill estimator is used as follows. First, calculate the estimator at each integer , and then plot the ordered pairs . Then, select from the set of Hill estimators which are roughly constant with respect to : these stable values are regarded as reasonable estimates for the shape parameter . If are i.i.d., then the Hill's estimator is a consistent estimator for the shape parameter [4].
Note that the Hill estimator makes a use of the log-transformation for the observations . (The Pickand's estimator also employed the log-transformation, but in a slightly different way
[5].)
^Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics. 29 (3): 339–349. doi:10.2307/1269343. JSTOR1269343.
^Castillo, Enrique, and Ali S. Hadi. "Fitting the generalized Pareto distribution to data." Journal of the American Statistical Association 92.440 (1997): 1609-1620.
Lee, Seyoon; Kim, J.H.K. (2018). "Exponentiated generalized Pareto distribution:Properties and applications towards extreme value theory". Communications in Statistics - Theory and Methods. 48 (8): 1–25. arXiv:1708.01686. doi:10.1080/03610926.2018.1441418. S2CID88514574.
N. L. Johnson; S. Kotz; N. Balakrishnan (1994). Continuous Univariate Distributions Volume 1, second edition. New York: Wiley. ISBN978-0-471-58495-7. Chapter 20, Section 12: Generalized Pareto Distributions.
Arnold, B. C.; Laguna, L. (1977). On generalized Pareto distributions with applications to income data. Ames, Iowa: Iowa State University, Department of Economics.
Siska YuniatiSiska Yuniati tahun 2012Lahir26 Juni 1980 (umur 43)Bantul, Daerah Istimewa Yogyakarta, IndonesiaKebangsaanIndonesiaWarga negaraWarga Negara IndonesiaAlmamaterUniversitas Negeri YogyakartaPenghargaanInternet Sehat Blog & Content Award Satyalancana Siska Yuniati (lahir 26 Juni 1980) adalah penulis, penyunting, dan blogger berkebangsaan Indonesia. Siska merupakan salah satu penerima Penghargaan Indonesian ICT Partnership Association dan Penghargaan Badan Pengembangan dan Pe...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)G...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) ملعب دوايت يوركمعلومات عامةالمنطقة الإدارية باكوليت البلد ترينيداد وتوباغو[1] التشييد والافتتاحالافتتاح الرسمي 2001 الاستعمالالرياضة كرة القدم المس...
Dominican baseball player (born 1980) For the American pitcher born in 1997, see Frank German. In this Spanish name, the first or paternal surname is Germán and the second or maternal family name is Madé. Baseball player Franklyn GermánGermán with the Chicago White Sox in spring training in 2009Relief pitcherBorn: (1980-01-20) January 20, 1980 (age 43)San Cristóbal, Dominican RepublicBatted: RightThrew: RightMLB debutSeptember 7, 2002, for the Detroit TigersLa...
Медаль «В пам'ять короля Олафа V»норв. Olav Vs Minnemedalje 30. januar 1991 Країна НорвегіяТип медальСтатус не вручається Нагородження Засновано: 30 січня 1991Нагороджено: золотих - 67, срібних - 207Нагороджені: Черговість Старша нагорода Медаль 100-річчя короля Гокона VIIМолодша нагорода Пам'...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chinakurali – news · newspapers · books · scholar · JSTOR (January 2018) (Learn how and when to remove this template message) Chinakurali Village 12°32′22″N 76°36′14″E / 12.539373°N 76.603895°E / 12.539373; 76.603895 Chinakur...
Mona Vale Hospital, viewed from the adjacent Mona Vale Golf Course, pre-2021. Demolition works on the site of the former Mona Vale hospital, June 2021 Hospital in New South Wales, AustraliaMona Vale HospitalNorthern Sydney Local Health DistrictMona Vale Hospital's Beachside Rehabilitation Centre, opened in 2014.GeographyLocationMona Vale, Sydney, New South Wales, AustraliaCoordinates33°41′08″S 151°18′24″E / 33.6855°S 151.3067°E / -33.6855; 151.3067Organisat...
Список памятников и мемориалов города Бендеры включая утраченные (выделены курсивом) Персонаж Год установки Местоположение Авторы(скульпторы; архитекторы) Фото Примечания и ссылки Матиасу Миллеру Бендерская крепость Александру Сергеевичу Пушкину(статья) 6 июня 1980 год...
Sketsa Portugis untuk Simeon. Suku Simeon (Ibrani: שבט שִׁמְעוֹן Shevet Shim'on, Šḗḇeṭ Šimʻôn; bahasa Inggris: Tribe of Simeon) adalah salah satu dari suku-suku Israel menurut Alkitab Ibrani, keturunan dari Simeon, anak Yakub. Pembagian tanah suku-suku Israel Wilayah Suku Simeon menerima daerah kepunyaan mereka menurut undian yang ke-2 pada zaman Yosua. Milik pusaka mereka ada di tengah-tengah milik pusaka bani Yehuda. Sebagai milik warisan mereka menerima: Bersy...
Branko PetranovićBorn31 October 1927 (1927-10-31)Cetinje, Kingdom of SCSDied17 June 1994(1994-06-17) (aged 66)Belgrade, Serbia, FR YugoslaviaCitizenshipSerbianEducationBelgrade UniversityScientific careerFieldsHistorian Branko Petranović (31 October 1927, Cetinje — 17 June 1994, Belgrade) was a Serbian historian and a Belgrade University professor specializing in history of Yugoslavia.[1][2] Career Branko Petranović was born in Cetinje, Kingdom of Serbs, Croats ...
University in Seoul, South Korea This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (June 2016) (Learn how and when to remove this template message) This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help ...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Total Pwnage – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when to remove this template messag...
1978 science fiction novel by James P. Hogan The Genesis Machine First editionAuthorJames P. HoganCover artistDarrell K. SweetCountryUnited StatesLanguageEnglishGenreScience fictionPublisherDel Rey BooksPublication dateApril 1978Media typePrint (Hardcover and Paperback)Pages299ISBN0-345-27231-5 The Genesis Machine is a 1978 science fiction novel by James P. Hogan. Background Hogan discussed the background of the novel in his essay Discovering Hyperspace.[1] While developing ...
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Kaddam Project – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this template message) Dam in Telangana, IndiaKaddam ProjectLocation of Kaddam Project in TelanganaShow map of TelanganaKaddam Project (India)Show map of IndiaOfficial namekadem river projectLocationK...
تُشير الأساطير الفيجية إلى مجموع المعتقدات التي يمارسها السكان الأصليون في جزيرة فيجي. وتشمل الآلهة ديجي (Degei)، الثعبان الذي هو الإله الأعلى لفيجي، وهو خالق العالم (الفيجي). يُحاكم النفوس الميتة حديثا بعد مرورها من خلال واحد من اثنين من الكهوف: سيباسيبا أو دراكولو.[1] عدد...
Struck idiophone operated by a keyboard For the car model, see Hyundai Celesta. For other uses of Celeste, see Celeste (disambiguation). Not to be confused with Celestia. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2016) (Learn how and when to remove this template message) CelestaKeyboard instrumentOther namesCelesteClassification IdiophoneHornbo...
Paghimo ni bot Lsjbot. 16°43′47″N 96°39′55″W / 16.72986°N 96.66514°W / 16.72986; -96.66514 Santa Lucía Ocotlán Munisipyo Nasod Mehiko Estado Estado de Oaxaca Gitas-on 1,542 m (5,059 ft) Tiganos 16°43′47″N 96°39′55″W / 16.72986°N 96.66514°W / 16.72986; -96.66514 Timezone CST (UTC-6) - summer (DST) CDT (UTC-5) Munisipyo ang Santa Lucía Ocotlán sa Mehiko.[1] Nahimutang ni sa estado sa Est...
Les Thonscomune Les Thons – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Vosgi ArrondissementNeufchâteau CantoneDarney TerritorioCoordinate47°59′N 5°53′E47°59′N, 5°53′E (Les Thons) Superficie10 km² Abitanti129[1] (2009) Densità12,9 ab./km² Altre informazioniCod. postale88410 Fuso orarioUTC+1 Codice INSEE88471 CartografiaLes Thons Modifica dati su Wikidata · Manuale Les Thons è un comune francese di 129 abitanti situato nel d...