Generalized Pareto distribution

Generalized Pareto distribution
Probability density function
Gpdpdf
GPD distribution functions for and different values of and
Cumulative distribution function
Gpdcdf
Parameters

location (real)
scale (real)

shape (real)
Support


PDF


where
CDF
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy
MGF
CF
Method of moments
Expected shortfall [1]

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape .[2][3] Sometimes it is specified by only scale and shape[4] and sometimes only by its shape parameter. Some references give the shape parameter as .[5]

Definition

The standard cumulative distribution function (cdf) of the GPD is defined by[6]

where the support is for and for . The corresponding probability density function (pdf) is

Characterization

The related location-scale family of distributions is obtained by replacing the argument z by and adjusting the support accordingly.

The cumulative distribution function of (, , and ) is

where the support of is when , and when .

The probability density function (pdf) of is

,

again, for when , and when .

The pdf is a solution of the following differential equation: [citation needed]

Special cases

  • If the shape and location are both zero, the GPD is equivalent to the exponential distribution.
  • With shape , the GPD is equivalent to the continuous uniform distribution .[7]
  • With shape and location , the GPD is equivalent to the Pareto distribution with scale and shape .
  • If , , , then [1]. (exGPD stands for the exponentiated generalized Pareto distribution.)
  • GPD is similar to the Burr distribution.

Generating generalized Pareto random variables

Generating GPD random variables

If U is uniformly distributed on (0, 1], then

and

Both formulas are obtained by inversion of the cdf.

In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.

GPD as an Exponential-Gamma Mixture

A GPD random variable can also be expressed as an exponential random variable, with a Gamma distributed rate parameter.

and

then

Notice however, that since the parameters for the Gamma distribution must be greater than zero, we obtain the additional restrictions that: must be positive.

In addition to this mixture (or compound) expression, the generalized Pareto distribution can also be expressed as a simple ratio. Concretely, for and , we have . This is a consequence of the mixture after setting and taking into account that the rate parameters of the exponential and gamma distribution are simply inverse multiplicative constants.

Exponentiated generalized Pareto distribution

The exponentiated generalized Pareto distribution (exGPD)

The pdf of the (exponentiated generalized Pareto distribution) for different values and .

If , , , then is distributed according to the exponentiated generalized Pareto distribution, denoted by , .

The probability density function(pdf) of , is

where the support is for , and for .

For all , the becomes the location parameter. See the right panel for the pdf when the shape is positive.

The exGPD has finite moments of all orders for all and .

The variance of the as a function of . Note that the variance only depends on . The red dotted line represents the variance evaluated at , that is, .

The moment-generating function of is

where and denote the beta function and gamma function, respectively.

The expected value of , depends on the scale and shape parameters, while the participates through the digamma function:

Note that for a fixed value for the , the plays as the location parameter under the exponentiated generalized Pareto distribution.

The variance of , depends on the shape parameter only through the polygamma function of order 1 (also called the trigamma function):

See the right panel for the variance as a function of . Note that .

Note that the roles of the scale parameter and the shape parameter under are separably interpretable, which may lead to a robust efficient estimation for the than using the [2]. The roles of the two parameters are associated each other under (at least up to the second central moment); see the formula of variance wherein both parameters are participated.

The Hill's estimator

Assume that are observations (need not be i.i.d.) from an unknown heavy-tailed distribution such that its tail distribution is regularly varying with the tail-index (hence, the corresponding shape parameter is ). To be specific, the tail distribution is described as

It is of a particular interest in the extreme value theory to estimate the shape parameter , especially when is positive (so called the heavy-tailed distribution).

Let be their conditional excess distribution function. Pickands–Balkema–de Haan theorem (Pickands, 1975; Balkema and de Haan, 1974) states that for a large class of underlying distribution functions , and large , is well approximated by the generalized Pareto distribution (GPD), which motivated Peak Over Threshold (POT) methods to estimate : the GPD plays the key role in POT approach.

A renowned estimator using the POT methodology is the Hill's estimator. Technical formulation of the Hill's estimator is as follows. For , write for the -th largest value of . Then, with this notation, the Hill's estimator (see page 190 of Reference 5 by Embrechts et al [3]) based on the upper order statistics is defined as

In practice, the Hill estimator is used as follows. First, calculate the estimator at each integer , and then plot the ordered pairs . Then, select from the set of Hill estimators which are roughly constant with respect to : these stable values are regarded as reasonable estimates for the shape parameter . If are i.i.d., then the Hill's estimator is a consistent estimator for the shape parameter [4].

Note that the Hill estimator makes a use of the log-transformation for the observations . (The Pickand's estimator also employed the log-transformation, but in a slightly different way [5].)

See also

References

  1. ^ a b Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019). "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation" (PDF). Annals of Operations Research. 299 (1–2). Springer: 1281–1315. arXiv:1811.11301. doi:10.1007/s10479-019-03373-1. S2CID 254231768. Archived from the original (PDF) on 2023-03-31. Retrieved 2023-02-27.
  2. ^ Coles, Stuart (2001-12-12). An Introduction to Statistical Modeling of Extreme Values. Springer. p. 75. ISBN 9781852334598.
  3. ^ Dargahi-Noubary, G. R. (1989). "On tail estimation: An improved method". Mathematical Geology. 21 (8): 829–842. Bibcode:1989MatGe..21..829D. doi:10.1007/BF00894450. S2CID 122710961.
  4. ^ Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics. 29 (3): 339–349. doi:10.2307/1269343. JSTOR 1269343.
  5. ^ Davison, A. C. (1984-09-30). "Modelling Excesses over High Thresholds, with an Application". In de Oliveira, J. Tiago (ed.). Statistical Extremes and Applications. Kluwer. p. 462. ISBN 9789027718044.
  6. ^ Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas (1997-01-01). Modelling extremal events for insurance and finance. Springer. p. 162. ISBN 9783540609315.
  7. ^ Castillo, Enrique, and Ali S. Hadi. "Fitting the generalized Pareto distribution to data." Journal of the American Statistical Association 92.440 (1997): 1609-1620.

Further reading

Read other articles:

Siska YuniatiSiska Yuniati tahun 2012Lahir26 Juni 1980 (umur 43)Bantul, Daerah Istimewa Yogyakarta, IndonesiaKebangsaanIndonesiaWarga negaraWarga Negara IndonesiaAlmamaterUniversitas Negeri YogyakartaPenghargaanInternet Sehat Blog & Content Award Satyalancana Siska Yuniati (lahir 26 Juni 1980) adalah penulis, penyunting, dan blogger berkebangsaan Indonesia. Siska merupakan salah satu penerima Penghargaan Indonesian ICT Partnership Association dan Penghargaan Badan Pengembangan dan Pe...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)G...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) ملعب دوايت يوركمعلومات عامةالمنطقة الإدارية باكوليت البلد  ترينيداد وتوباغو[1] التشييد والافتتاحالافتتاح الرسمي 2001 الاستعمالالرياضة كرة القدم المس...

Wappen Deutschlandkarte 51.16194444444411.117222222222138Koordinaten: 51° 10′ N, 11° 7′ O Basisdaten Bundesland: Thüringen Landkreis: Sömmerda Höhe: 138 m ü. NHN Fläche: 87,57 km2 Einwohner: 19.156 (31. Dez. 2022)[1] Bevölkerungsdichte: 219 Einwohner je km2 Postleitzahl: 99610 Vorwahl: 03634 Kfz-Kennzeichen: SÖM Gemeindeschlüssel: 16 0 68 051 LOCODE: DE SOM Stadtgliederung: 9 Stadtteile Adresse der Stad...

 

Dominican baseball player (born 1980) For the American pitcher born in 1997, see Frank German. In this Spanish name, the first or paternal surname is Germán and the second or maternal family name is Madé. Baseball player Franklyn GermánGermán with the Chicago White Sox in spring training in 2009Relief pitcherBorn: (1980-01-20) January 20, 1980 (age 43)San Cristóbal, Dominican RepublicBatted: RightThrew: RightMLB debutSeptember 7, 2002, for the Detroit TigersLa...

 

Медаль «В пам'ять короля Олафа V»норв. Olav Vs Minnemedalje 30. januar 1991 Країна НорвегіяТип медальСтатус не вручається Нагородження Засновано: 30 січня 1991Нагороджено: золотих - 67, срібних - 207Нагороджені: Черговість Старша нагорода Медаль 100-річчя короля Гокона VIIМолодша нагорода Пам'...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chinakurali – news · newspapers · books · scholar · JSTOR (January 2018) (Learn how and when to remove this template message) Chinakurali Village 12°32′22″N 76°36′14″E / 12.539373°N 76.603895°E / 12.539373; 76.603895 Chinakur...

 

Mona Vale Hospital, viewed from the adjacent Mona Vale Golf Course, pre-2021. Demolition works on the site of the former Mona Vale hospital, June 2021 Hospital in New South Wales, AustraliaMona Vale HospitalNorthern Sydney Local Health DistrictMona Vale Hospital's Beachside Rehabilitation Centre, opened in 2014.GeographyLocationMona Vale, Sydney, New South Wales, AustraliaCoordinates33°41′08″S 151°18′24″E / 33.6855°S 151.3067°E / -33.6855; 151.3067Organisat...

 

Список памятников и мемориалов города Бендеры включая утраченные (выделены курсивом) Персонаж Год установки Местоположение Авторы(скульпторы; архитекторы) Фото Примечания и ссылки Матиасу Миллеру Бендерская крепость Александру Сергеевичу Пушкину(статья) 6 июня 1980 год...

Sketsa Portugis untuk Simeon. Suku Simeon (Ibrani: שבט שִׁמְעוֹן Shevet Shim'on, Šḗḇeṭ Šimʻôn; bahasa Inggris: Tribe of Simeon) adalah salah satu dari suku-suku Israel menurut Alkitab Ibrani, keturunan dari Simeon, anak Yakub. Pembagian tanah suku-suku Israel Wilayah Suku Simeon menerima daerah kepunyaan mereka menurut undian yang ke-2 pada zaman Yosua. Milik pusaka mereka ada di tengah-tengah milik pusaka bani Yehuda. Sebagai milik warisan mereka menerima: Bersy...

 

Branko PetranovićBorn31 October 1927 (1927-10-31)Cetinje, Kingdom of SCSDied17 June 1994(1994-06-17) (aged 66)Belgrade, Serbia, FR YugoslaviaCitizenshipSerbianEducationBelgrade UniversityScientific careerFieldsHistorian Branko Petranović (31 October 1927, Cetinje — 17 June 1994, Belgrade) was a Serbian historian and a Belgrade University professor specializing in history of Yugoslavia.[1][2] Career Branko Petranović was born in Cetinje, Kingdom of Serbs, Croats ...

 

University in Seoul, South Korea This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (June 2016) (Learn how and when to remove this template message) This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help ...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Total Pwnage – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when to remove this template messag...

 

1978 science fiction novel by James P. Hogan The Genesis Machine First editionAuthorJames P. HoganCover artistDarrell K. SweetCountryUnited StatesLanguageEnglishGenreScience fictionPublisherDel Rey BooksPublication dateApril 1978Media typePrint (Hardcover and Paperback)Pages299ISBN0-345-27231-5 The Genesis Machine is a 1978 science fiction novel by James P. Hogan. Background Hogan discussed the background of the novel in his essay Discovering Hyperspace.[1] While developing ...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Kaddam Project – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this template message) Dam in Telangana, IndiaKaddam ProjectLocation of Kaddam Project in TelanganaShow map of TelanganaKaddam Project (India)Show map of IndiaOfficial namekadem river projectLocationK...

تُشير الأساطير الفيجية إلى مجموع المعتقدات التي يمارسها السكان الأصليون في جزيرة فيجي. وتشمل الآلهة ديجي (Degei)، الثعبان الذي هو الإله الأعلى لفيجي، وهو خالق العالم (الفيجي). يُحاكم النفوس الميتة حديثا بعد مرورها من خلال واحد من اثنين من الكهوف: سيباسيبا أو دراكولو.[1] عدد...

 

1994年、南アフリカ共和国初の全人種選挙で一票を投じるネルソン・マンデラ。その後同国大統領を務めたことは世界的に有名である。ところが2000年代後半に至り、「マンデラは1980年代に獄中死した」という誤った記憶を持つ人が少なからず存在することが確認された[1]。 マンデラ効果(マンデラこうか、英: Mandela Effect)とは、事実と異なる記憶を不特定多数の...

 

Struck idiophone operated by a keyboard For the car model, see Hyundai Celesta. For other uses of Celeste, see Celeste (disambiguation). Not to be confused with Celestia. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2016) (Learn how and when to remove this template message) CelestaKeyboard instrumentOther namesCelesteClassification IdiophoneHornbo...

Paghimo ni bot Lsjbot. 16°43′47″N 96°39′55″W / 16.72986°N 96.66514°W / 16.72986; -96.66514 Santa Lucía Ocotlán Munisipyo Nasod  Mehiko Estado Estado de Oaxaca Gitas-on 1,542 m (5,059 ft) Tiganos 16°43′47″N 96°39′55″W / 16.72986°N 96.66514°W / 16.72986; -96.66514 Timezone CST (UTC-6)  - summer (DST) CDT (UTC-5) Munisipyo ang Santa Lucía Ocotlán sa Mehiko.[1] Nahimutang ni sa estado sa Est...

 

Les Thonscomune Les Thons – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Vosgi ArrondissementNeufchâteau CantoneDarney TerritorioCoordinate47°59′N 5°53′E47°59′N, 5°53′E (Les Thons) Superficie10 km² Abitanti129[1] (2009) Densità12,9 ab./km² Altre informazioniCod. postale88410 Fuso orarioUTC+1 Codice INSEE88471 CartografiaLes Thons Modifica dati su Wikidata · Manuale Les Thons è un comune francese di 129 abitanti situato nel d...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!