Method of moments (statistics)

In statistics, the method of moments is a method of estimation of population parameters. The same principle is used to derive higher moments like skewness and kurtosis.

It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest. Those expressions are then set equal to the sample moments. The number of such equations is the same as the number of parameters to be estimated. Those equations are then solved for the parameters of interest. The solutions are estimates of those parameters.

The method of moments was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit theorem. The idea of matching empirical moments of a distribution to the population moments dates back at least to Karl Pearson.[1]

Method

Suppose that the parameter = () characterizes the distribution of the random variable .[1] Suppose the first moments of the true distribution (the "population moments") can be expressed as functions of the s:

Suppose a sample of size is drawn, resulting in the values . For , let

be the j-th sample moment, an estimate of . The method of moments estimator for denoted by is defined to be the solution (if one exists) to the equations:[2]


The method described here for single random variables generalizes in an obvious manner to multiple random variables leading to multiple choices for moments to be used. Different choices generally lead to different solutions [5], [6].

Advantages and disadvantages

The method of moments is fairly simple and yields consistent estimators (under very weak assumptions), though these estimators are often biased.

It is an alternative to the method of maximum likelihood.

However, in some cases the likelihood equations may be intractable without computers, whereas the method-of-moments estimators can be computed much more quickly and easily. Due to easy computability, method-of-moments estimates may be used as the first approximation to the solutions of the likelihood equations, and successive improved approximations may then be found by the Newton–Raphson method. In this way the method of moments can assist in finding maximum likelihood estimates.

In some cases, infrequent with large samples but less infrequent with small samples, the estimates given by the method of moments are outside of the parameter space (as shown in the example below); it does not make sense to rely on them then. That problem never arises in the method of maximum likelihood[3] Also, estimates by the method of moments are not necessarily sufficient statistics, i.e., they sometimes fail to take into account all relevant information in the sample.

When estimating other structural parameters (e.g., parameters of a utility function, instead of parameters of a known probability distribution), appropriate probability distributions may not be known, and moment-based estimates may be preferred to maximum likelihood estimation.

Alternative method of moments

The equations to be solved in the method of moments (MoM) are in general nonlinear and there are no generally applicable guarantees that tractable solutions exist[citation needed]. But there is an alternative approach to using sample moments to estimate data model parameters in terms of known dependence of model moments on these parameters, and this alternative requires the solution of only linear equations or, more generally, tensor equations. This alternative is referred to as the Bayesian-Like MoM (BL-MoM), and it differs from the classical MoM in that it uses optimally weighted sample moments. Considering that the MoM is typically motivated by a lack of sufficient knowledge about the data model to determine likelihood functions and associated a posteriori probabilities of unknown or random parameters, it is odd that there exists a type of MoM that is Bayesian-Like. But the particular meaning of Bayesian-Like leads to a problem formulation in which required knowledge of a posteriori probabilities is replaced with required knowledge of only the dependence of model moments on unknown model parameters, which is exactly the knowledge required by the traditional MoM [1],[2],[5]–[9]. The BL-MoM also uses knowledge of a priori probabilities of the parameters to be estimated, when available, but otherwise uses uniform priors.[citation needed]

The BL-MoM has been reported on in only the applied statistics literature in connection with parameter estimation and hypothesis testing using observations of stochastic processes for problems in Information and Communications Theory and, in particular, communications receiver design in the absence of knowledge of likelihood functions or associated a posteriori probabilities [10] and references therein. In addition, the restatement of this receiver design approach for stochastic process models as an alternative to the classical MoM for any type of multivariate data is available in tutorial form at the university website [11, page 11.4]. The applications in [10] and references demonstrate some important characteristics of this alternative to the classical MoM, and a detailed list of relative advantages and disadvantages is given in [11, page 11.4], but the literature is missing direct comparisons in specific applications of the classical MoM and the BL-MoM.[citation needed]

Examples

An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval . The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix.[2]

Proving the central limit theorem

Let be independent random variables with mean 0 and variance 1, then let . We can compute the moments of asExplicit expansion shows thatwhere the numerator is the number of ways to select distinct pairs of balls by picking one each from buckets, each containing balls numbered from to . At the limit, all moments converge to that of a standard normal distribution. More analysis then show that this convergence in moments imply a convergence in distribution.

Essentially this argument was published by Chebyshev in 1887.[3]

Uniform distribution

Consider the uniform distribution on the interval , . If then we have

Solving these equations gives

Given a set of samples we can use the sample moments and in these formulae in order to estimate and .

Note, however, that this method can produce inconsistent results in some cases. For example, the set of samples results in the estimate even though and so it is impossible for the set to have been drawn from in this case.

See also

References

  1. ^ Kimiko O. Bowman and L. R. Shenton, "Estimator: Method of Moments", pp 2092–2098, Encyclopedia of statistical sciences, Wiley (1998).
  2. ^ J. Munkhammar, L. Mattsson, J. Rydén (2017) "Polynomial probability distribution estimation using the method of moments". PLoS ONE 12(4): e0174573. https://doi.org/10.1371/journal.pone.0174573
  3. ^ Fischer, Hans (2011). "4. Chebyshev's and Markov's Contributions". History of the central limit theorem : from classical to modern probability theory. New York: Springer. ISBN 978-0-387-87857-7. OCLC 682910965.

References needing to be wikified

[4] Pearson, K. (1936), "Method of Moments and Method of Maximum Likelihood", Biometrika 28(1/2), 35–59.

[5] Lindsay, B.G. & Basak P. (1993). “Multivariate normal mixtures: a fast consistent method of moments”, Journal of the American Statistical Association 88, 468–476.

[6] Quandt, R.E. & Ramsey, J.B. (1978). “Estimating mixtures of normal distributions and switching regressions”, Journal of the American Statistical Association 73, 730–752.

[7] https://real-statistics.com/distribution-fitting/method-of-moments/

[8] Hansen, L. (1982). “Large sample properties of generalized method of moments estimators”, Econometrica 50, 1029–1054.

[9] Lindsay, B.G. (1982). “Conditional score functions: some optimality results”, Biometrika 69, 503–512.

[10] Gardner, W.A., “Design of nearest prototype signal classifiers”, IEEE Transactions on Information Theory 27 (3), 368–372,1981

[11] Cyclostationarity

Read other articles:

  لمعانٍ أخرى، طالع الطريق الدائري (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2019) الطريق الدائري - المدينة المنورة الطريق الدائري في المدينة المنورة هو مجموعة من الطرق الدائرية الشكل التي تم...

 

محكمة العدل الأوروبية European Court of Justice محكمة العدل الأوروبية تاريخ التأسيس 1952 المقر لوكسمبورغ الرئيس الحالي Koen Lenaerts الموقع على الإنترنت الموقع الرسمي تعديل مصدري - تعديل   جزء من سلسلة مقالات سياسة الاتحاد الأوروبيالاتحاد الأوروبي الدول الأعضاء (27) إسبانيا إستونيا إيطالي...

 

Місто Осикаангл. Osyka Координати 31°00′25″ пн. ш. 90°28′15″ зх. д. / 31.00720000002777965° пн. ш. 90.47110000002778918° зх. д. / 31.00720000002777965; -90.47110000002778918Координати: 31°00′25″ пн. ш. 90°28′15″ зх. д. / 31.00720000002777965° пн. ш. 90.47110000002778918° зх. д. / 31.007...

東京駅 丸の内口(2023年6月) とうきょう Tōkyō/Tokyo 所在地 東京都千代田区丸の内一丁目所属事業者 東日本旅客鉄道(JR東日本・駅詳細) 東海旅客鉄道(JR東海・駅詳細) 東京地下鉄(東京メトロ・駅詳細) テンプレートを表示 東京駅(とうきょうえき)は、東京都千代田区丸の内一丁目にある、東日本旅客鉄道(JR東日本)・東海旅客鉄道(JR東海)・東京地下...

 

 Nota: princesa redireciona para este artigo. Para o município brasileiro, veja Princesa (Santa Catarina). Para outros significados, veja Príncipe (desambiguação). Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2015) Classificação da Nobreza Imperador e I...

 

Untuk kegunaan lain, lihat Dua Sisi. Dua SisiAlbum kompilasi karya Fariz R.M. dan 2DDirilisOktober 2013GenrePopDurasi58:46LabelGenta Records Dua Sisi adalah album split dari musisi Fariz R.M. dan grup musik 2D yang dirilis pada tahun 2013 di bawah label Genta Records. Album ini adalah album kompilasi berisi empat belas lagu dengan masing-masing musisi menyumbangkan tujuh buah lagu. Pada album ini, kedua penampil tersebut menyanyikan versi daur ulang atau merilis ulang repertoar lagu-lagu ...

Stasiun Araya新屋駅Stasiun Araya pada Desember 2004LokasiKasukawamachi Araya 233-2, Maebashi-shi, Gunma-ken 371-0206JepangKoordinat36°24′50″N 139°11′47″E / 36.41389°N 139.19639°E / 36.41389; 139.19639Koordinat: 36°24′50″N 139°11′47″E / 36.41389°N 139.19639°E / 36.41389; 139.19639Pengelola Jōmō Electric Railway CompanyJalur■ Jalur JōmōLetak dari pangkal12.0 km dari Chūō-MaebashiJumlah peron1 peron sampingSejarah...

 

Honorific order of the Sultanate of Brunei The Most Honourable Order of Seri Paduka Mahkota BruneiDarjah Seri Paduka Mahkota Brunei Yang Amat MuliaAwarded by Sultan of BruneiTypeStateEstablished1 March 1954CountryBruneiRibbonFounderSultan Omar Ali Saifuddien IIIClassesFirst ClassSecond ClassThird ClassPost-nominalsSPMBDPMBSMB The Most Honourable Order of Seri Paduka Mahkota Brunei[1] (Malay: Darjah Seri Paduka Mahkota Brunei Yang Amat Mulia), also translated as The Most Honourable Ord...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 1997 في الولايات المتحدةمعلومات عامةالسنة 1997 1996 في الولايات المتحدة 1998 في الولايات المتحدة تعديل - تعديل م...

ПосёлокНовотроицкая 54°09′17″ с. ш. 47°25′43″ в. д.HGЯO Страна  Россия Субъект Федерации Ульяновская область Муниципальный район Майнский Сельское поселение Анненковское История и география Часовой пояс UTC+4:00 Население Население 2 человека (2010) Национальности...

 

1864 overture by Pyotr Ilyich Tchaikovsky Not to be confused with the symphonic fantasia The Tempest, Op. 18, written in 1873. The Stormby Pyotr Ilyich TchaikovskyTchaikovsky around the time of composition.KeyE minorComposed1864 The Storm, Op. 76 (TH 36) (Russian: Гроза, groza), is an overture (in the context of a symphonic poem) in E minor composed by Pyotr Ilyich Tchaikovsky around June and August 1864. The work is inspired by the play The Storm by the Russian playwright Alexander Ostr...

 

American artist Alan SonfistTime Landscape of New YorkBornBronx, New York CityNationalityAmericanKnown forSustainable ArtMovementEnvironmental Art, Land Art Alan Sonfist is a New York City based American artist best known as a pioneer[1] and a trailblazer[1] of the Land or Earth Art movement.[2] He first gained prominence for his Time Landscape found on the corner of West Houston Street and LaGuardia Place in New York City's Greenwich Village.[3][4]...

English footballer and manager (born 1980) This article is about the English footballer. For other people, see Scott Parker (disambiguation). Scott Parker Parker with AFC Bournemouth in 2021Personal informationFull name Scott Matthew Parker[1]Date of birth (1980-10-13) 13 October 1980 (age 43)[2]Place of birth Lambeth, EnglandHeight 5 ft 9 in (1.75 m)[3]Position(s) MidfielderYouth career1990–1997 Charlton AthleticSenior career*Years Team Apps (Gls...

 

Species of ant Formica moki Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hymenoptera Family: Formicidae Subfamily: Formicinae Tribe: Formicini Genus: Formica Species: F. moki Binomial name Formica mokiWheeler, 1906 Formica moki is a species of ant in the family Formicidae.[1][2][3][4][5][6][7] References ^ Formica moki Report. Integrated Taxonomic Information System. Retrieve...

 

Santuario de Nuestra Señora de la Soledad  Patrimonio de la Humanidad (parte de «Centro histórico de Lima», n.º ref. 500) (1991) Enlace a ficha de Patrimonio de la Humanidad.Patrimonio Cultural de la Nación (1972) LocalizaciónPaís PerúDivisión Provincia de LimaDirección Lima, Perú PerúCoordenadas 12°02′42″S 77°01′39″O / -12.045099, -77.0276044Historia del edificioFundador Cofradía de Nuestra Señora de la SoledadConstrucción Siglo XVIDatos ar...

U.S. Navy battle damage repair ship USS Demeter (ARB-10), laid up in reserve at East Boston Naval Annex, September 1960. History United States Name LST-1121 Demeter NamesakeDemeter BuilderChicago Bridge & Iron Company, Seneca, Illinois Laid down25 October 1944 Launched19 January 1945 Commissioned 31 January 1945, reduced commission 3 July 1945, full commission Decommissioned 2 March 1945 27 May 1947 Identification Hull symbol: LST-1121 Hull symbol: ARB-10 Code letters: NJMJ Fate Placed in...

 

Military campaign against the Ottoman Empire during World War I Battle of Gallipoli redirects here. For other uses, see Battle of Gallipoli (disambiguation). Dardanelles Campaign redirects here. For other uses, see Battle of the Dardanelles. Gallipoli campaignPart of the Middle Eastern theatre of the First World WarA collection of photographs from the campaign. From top and left to right: Ottoman commanders including Mustafa Kemal (fourth from left); Entente warships; V Beach from the deck of...

 

Hospital in Achaia, GreeceGeneral Hospital of AigioGeographyLocationAigio, Achaia, GreeceCoordinates38°14′31″N 22°04′22″E / 38.24201°N 22.07271°E / 38.24201; 22.07271OrganisationCare systemPublicly funded health careTypeClinicalServicesEmergency departmentYesBeds100HistoryOpened1958 (new building 1995)LinksWebsitewww.gnaigio.gr/aigio/ (In Greek)ListsHospitals in Greece The Aigio General Hospital (Greek: Γενικό Νοσοκομείο Αιγίου), also ...

Silent-era film performer, zoo animal Joe MartinJoe Martin at Universal City Zoo, 1919Other name(s)Chimpanzee Charlie, Giant Gorilla ManSpeciesPongo (genus), species unidentifiedSexMaleBornIndonesian archipelagoDiedUnknownOccupationAnimal actor, circus-zoo animalYears active1914–1931OwnersRobison brothers, Sam Behrendt, Universal Pictures, Barnes CircusWeight185 lb (84 kg)Height65 in (170 cm) Joe Martin (born between 1911 and 1913 – died after 1931) was a captive orang...

 

Esmee Brugts Datos personalesNacimiento Heinenoord, Países Bajos28 de julio de 2003 (20 años)Nacionalidad(es) NeerlandesaCarrera deportivaDeporte Fútbol femeninoClub profesionalDebut deportivo 2020(PSV Eindhoven)Club FC BarcelonaLiga Liga FPosición Centrocampista, delanteraDorsal(es) 22Selección nacionalSelección NED Países BajosDebut 2022Part. (goles) 20 (6)[editar datos en Wikidata] Esmee Brugts (Heinenoord, Holanda Meridional; 28 de julio de 2003) es un...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!