mixed Poisson distribution Notation
Pois
-->
(
λ λ -->
)
∧ ∧ -->
λ λ -->
π π -->
(
λ λ -->
)
{\displaystyle \operatorname {Pois} (\lambda )\,{\underset {\lambda }{\wedge }}\,\pi (\lambda )}
Parameters
λ λ -->
∈ ∈ -->
(
0
,
∞ ∞ -->
)
{\displaystyle \lambda \in (0,\infty )}
Support
k
∈ ∈ -->
N
0
{\displaystyle k\in \mathbb {N} _{0}}
PMF
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
k
k
!
e
− − -->
λ λ -->
π π -->
(
λ λ -->
)
d
λ λ -->
{\displaystyle \int \limits _{0}^{\infty }{\frac {\lambda ^{k}}{k!}}e^{-\lambda }\,\,\pi (\lambda )\,\mathrm {d} \lambda }
Mean
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
π π -->
(
λ λ -->
)
d
λ λ -->
{\displaystyle \int \limits _{0}^{\infty }\lambda \,\,\pi (\lambda )\,d\lambda }
Variance
∫ ∫ -->
0
∞ ∞ -->
(
λ λ -->
+
(
λ λ -->
− − -->
μ μ -->
π π -->
)
2
)
π π -->
(
λ λ -->
)
d
λ λ -->
{\displaystyle \int \limits _{0}^{\infty }(\lambda +(\lambda -\mu _{\pi })^{2})\,\,\pi (\lambda )\,d\lambda }
Skewness
(
μ μ -->
π π -->
+
σ σ -->
π π -->
2
)
− − -->
3
/
2
[
∫ ∫ -->
0
∞ ∞ -->
[
(
λ λ -->
− − -->
μ μ -->
π π -->
)
3
+
3
(
λ λ -->
− − -->
μ μ -->
π π -->
)
2
]
π π -->
(
λ λ -->
)
d
λ λ -->
+
μ μ -->
π π -->
]
{\displaystyle {\Bigl (}\mu _{\pi }+\sigma _{\pi }^{2}{\Bigr )}^{-3/2}\,{\Biggl [}\int \limits _{0}^{\infty }[(\lambda -\mu _{\pi })^{3}+3(\lambda -\mu _{\pi })^{2}]\,\pi (\lambda )\,d{\lambda }+\mu _{\pi }{\Biggr ]}}
MGF
M
π π -->
(
e
t
− − -->
1
)
{\displaystyle M_{\pi }(e^{t}-1)}
, with
M
π π -->
{\displaystyle M_{\pi }}
the MGF of π CF
M
π π -->
(
e
i
t
− − -->
1
)
{\displaystyle M_{\pi }(e^{it}-1)}
PGF
M
π π -->
(
z
− − -->
1
)
{\displaystyle M_{\pi }(z-1)}
A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution , and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution . Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model .[ 1] It should not be confused with compound Poisson distribution or compound Poisson process .[ 2]
Definition
A random variable X satisfies the mixed Poisson distribution with density π (λ ) if it has the probability distribution[ 3]
P
-->
(
X
=
k
)
=
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
k
k
!
e
− − -->
λ λ -->
π π -->
(
λ λ -->
)
d
λ λ -->
.
{\displaystyle \operatorname {P} (X=k)=\int _{0}^{\infty }{\frac {\lambda ^{k}}{k!}}e^{-\lambda }\,\,\pi (\lambda )\,\mathrm {d} \lambda .}
If we denote the probabilities of the Poisson distribution by q λ (k ), then
P
-->
(
X
=
k
)
=
∫ ∫ -->
0
∞ ∞ -->
q
λ λ -->
(
k
)
π π -->
(
λ λ -->
)
d
λ λ -->
.
{\displaystyle \operatorname {P} (X=k)=\int _{0}^{\infty }q_{\lambda }(k)\,\,\pi (\lambda )\,\mathrm {d} \lambda .}
Properties
In the following let
μ μ -->
π π -->
=
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
π π -->
(
λ λ -->
)
d
λ λ -->
{\displaystyle \mu _{\pi }=\int \limits _{0}^{\infty }\lambda \,\,\pi (\lambda )\,d\lambda \,}
be the expected value of the density
π π -->
(
λ λ -->
)
{\displaystyle \pi (\lambda )\,}
and
σ σ -->
π π -->
2
=
∫ ∫ -->
0
∞ ∞ -->
(
λ λ -->
− − -->
μ μ -->
π π -->
)
2
π π -->
(
λ λ -->
)
d
λ λ -->
{\displaystyle \sigma _{\pi }^{2}=\int \limits _{0}^{\infty }(\lambda -\mu _{\pi })^{2}\,\,\pi (\lambda )\,d\lambda \,}
be the variance of the density.
Expected value
The expected value of the mixed Poisson distribution is
E
-->
(
X
)
=
μ μ -->
π π -->
.
{\displaystyle \operatorname {E} (X)=\mu _{\pi }.}
Variance
For the variance one gets[ 3]
Var
-->
(
X
)
=
μ μ -->
π π -->
+
σ σ -->
π π -->
2
.
{\displaystyle \operatorname {Var} (X)=\mu _{\pi }+\sigma _{\pi }^{2}.}
Skewness
The skewness can be represented as
v
-->
(
X
)
=
(
μ μ -->
π π -->
+
σ σ -->
π π -->
2
)
− − -->
3
/
2
[
∫ ∫ -->
0
∞ ∞ -->
(
λ λ -->
− − -->
μ μ -->
π π -->
)
3
π π -->
(
λ λ -->
)
d
λ λ -->
+
μ μ -->
π π -->
]
.
{\displaystyle \operatorname {v} (X)={\Bigl (}\mu _{\pi }+\sigma _{\pi }^{2}{\Bigr )}^{-3/2}\,{\Biggl [}\int _{0}^{\infty }(\lambda -\mu _{\pi })^{3}\,\pi (\lambda )\,d{\lambda }+\mu _{\pi }{\Biggr ]}.}
Characteristic function
The characteristic function has the form
φ φ -->
X
(
s
)
=
M
π π -->
(
e
i
s
− − -->
1
)
.
{\displaystyle \varphi _{X}(s)=M_{\pi }(e^{is}-1).\,}
Where
M
π π -->
{\displaystyle M_{\pi }}
is the moment generating function of the density.
Probability generating function
For the probability generating function , one obtains[ 3]
m
X
(
s
)
=
M
π π -->
(
s
− − -->
1
)
.
{\displaystyle m_{X}(s)=M_{\pi }(s-1).\,}
Moment-generating function
The moment-generating function of the mixed Poisson distribution is
M
X
(
s
)
=
M
π π -->
(
e
s
− − -->
1
)
.
{\displaystyle M_{X}(s)=M_{\pi }(e^{s}-1).\,}
Examples
Proof
Let
π π -->
(
λ λ -->
)
=
(
p
1
− − -->
p
)
r
Γ Γ -->
(
r
)
λ λ -->
r
− − -->
1
e
− − -->
p
1
− − -->
p
λ λ -->
{\displaystyle \pi (\lambda )={\frac {({\frac {p}{1-p}})^{r}}{\Gamma (r)}}\lambda ^{r-1}e^{-{\frac {p}{1-p}}\lambda }}
be a density of a
Γ Γ -->
-->
(
r
,
p
1
− − -->
p
)
{\displaystyle \operatorname {\Gamma } \left(r,{\frac {p}{1-p}}\right)}
distributed random variable.
P
-->
(
X
=
k
)
=
1
k
!
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
k
e
− − -->
λ λ -->
(
p
1
− − -->
p
)
r
Γ Γ -->
(
r
)
λ λ -->
r
− − -->
1
e
− − -->
p
1
− − -->
p
λ λ -->
d
λ λ -->
=
p
r
(
1
− − -->
p
)
− − -->
r
Γ Γ -->
(
r
)
k
!
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
k
+
r
− − -->
1
e
− − -->
λ λ -->
1
1
− − -->
p
d
λ λ -->
=
p
r
(
1
− − -->
p
)
− − -->
r
Γ Γ -->
(
r
)
k
!
(
1
− − -->
p
)
k
+
r
∫ ∫ -->
0
∞ ∞ -->
λ λ -->
k
+
r
− − -->
1
e
− − -->
λ λ -->
d
λ λ -->
⏟ ⏟ -->
=
Γ Γ -->
(
r
+
k
)
=
Γ Γ -->
(
r
+
k
)
Γ Γ -->
(
r
)
k
!
(
1
− − -->
p
)
k
p
r
{\displaystyle {\begin{aligned}\operatorname {P} (X=k)&={\frac {1}{k!}}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda }{\frac {({\frac {p}{1-p}})^{r}}{\Gamma (r)}}\lambda ^{r-1}e^{-{\frac {p}{1-p}}\lambda }\,\mathrm {d} \lambda \\&={\frac {p^{r}(1-p)^{-r}}{\Gamma (r)k!}}\int _{0}^{\infty }\lambda ^{k+r-1}e^{-\lambda {\frac {1}{1-p}}}\,\mathrm {d} \lambda \\&={\frac {p^{r}(1-p)^{-r}}{\Gamma (r)k!}}(1-p)^{k+r}\underbrace {\int _{0}^{\infty }\lambda ^{k+r-1}e^{-\lambda }\,\mathrm {d} \lambda } _{=\Gamma (r+k)}\\&={\frac {\Gamma (r+k)}{\Gamma (r)k!}}(1-p)^{k}p^{r}\end{aligned}}}
Therefore we get
X
∼ ∼ -->
NegB
-->
(
r
,
p
)
.
{\displaystyle X\sim \operatorname {NegB} (r,p).}
Table of mixed Poisson distributions
Literature
Jan Grandell: Mixed Poisson Processes. Chapman & Hall, London 1997, ISBN 0-412-78700-8 .
Tom Britton: Stochastic Epidemic Models with Inference. Springer, 2019, doi :10.1007/978-3-030-30900-8
References
^ Willmot, Gordon E.; Lin, X. Sheldon (2001), "Mixed Poisson distributions" , Lundberg Approximations for Compound Distributions with Insurance Applications , Lecture Notes in Statistics, vol. 156, New York, NY: Springer New York, pp. 37– 49, doi :10.1007/978-1-4613-0111-0_3 , ISBN 978-0-387-95135-5 , retrieved 2022-07-08
^ Willmot, Gord (1986). "Mixed Compound Poisson Distributions" . ASTIN Bulletin . 16 (S1): S59 – S79 . doi :10.1017/S051503610001165X . ISSN 0515-0361 .
^ a b c d Willmot, Gord (2014-08-29). "Mixed Compound Poisson Distributions" . Astin Bulletin . 16 : 5– 7. doi :10.1017/S051503610001165X . S2CID 17737506 .
^ Karlis, Dimitris; Xekalaki, Evdokia (2005). "Mixed Poisson Distributions" . International Statistical Review . 73 (1): 35– 58. doi :10.1111/j.1751-5823.2005.tb00250.x . ISSN 0306-7734 . JSTOR 25472639 . S2CID 53637483 .
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families