It was first defined and used for describing particle speeds in idealized gases, where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other or with their thermal environment. The term "particle" in this context refers to gaseous particles only (atoms or molecules), and the system of particles is assumed to have reached thermodynamic equilibrium.[1] The energies of such particles follow what is known as Maxwell–Boltzmann statistics, and the statistical distribution of speeds is derived by equating particle energies with kinetic energy.
The Maxwell–Boltzmann distribution is a result of the kinetic theory of gases, which provides a simplified explanation of many fundamental gaseous properties, including pressure and diffusion.[3] The Maxwell–Boltzmann distribution applies fundamentally to particle velocities in three dimensions, but turns out to depend only on the speed (the magnitude of the velocity) of the particles. A particle speed probability distribution indicates which speeds are more likely: a randomly chosen particle will have a speed selected randomly from the distribution, and is more likely to be within one range of speeds than another. The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions, vortical flow, relativistic speed limits, and quantum exchange interactions) that can make their speed distribution different from the Maxwell–Boltzmann form. However, rarefied gases at ordinary temperatures behave very nearly like an ideal gas and the Maxwell speed distribution is an excellent approximation for such gases. This is also true for ideal plasmas, which are ionized gases of sufficiently low density.[4]
The distribution was first derived by Maxwell in 1860 on heuristic grounds.[5][6] Boltzmann later, in the 1870s, carried out significant investigations into the physical origins of this distribution. The distribution can be derived on the ground that it maximizes the entropy of the system. A list of derivations are:
For a system containing a large number of identical non-interacting, non-relativistic classical particles in thermodynamic equilibrium, the fraction of the particles within an infinitesimal element of the three-dimensional velocity space d 3v, centered on a velocity vector of magnitude , is given by
where:
is a probability distribution function, properly normalized so that over all velocities is unity.
One can write the element of velocity space as , for velocities in a standard Cartesian coordinate system, or as in a standard spherical coordinate system, where is an element of solid angle and .
The Maxwellian distribution function for particles moving in only one direction, if this direction is x, is
which can be obtained by integrating the three-dimensional form given above over vy and vz.
Recognizing the symmetry of , one can integrate over solid angle and write a probability distribution of speeds as the function[7]
This probability density function gives the probability, per unit speed, of finding the particle with a speed near v. This equation is simply the Maxwell–Boltzmann distribution (given in the infobox) with distribution parameter
The Maxwell–Boltzmann distribution is equivalent to the chi distribution with three degrees of freedom and scale parameter
or in unitless presentation:
With the Darwin–Fowler method of mean values, the Maxwell–Boltzmann distribution is obtained as an exact result.
Relaxation to the 2D Maxwell–Boltzmann distribution
For particles confined to move in a plane, the speed distribution is given by
This distribution is used for describing systems in equilibrium. However, most systems do not start out in their equilibrium state. The evolution of a system towards its equilibrium state is governed by the Boltzmann equation. The equation predicts that for short range interactions, the equilibrium velocity distribution will follow a Maxwell–Boltzmann distribution. To the right is a molecular dynamics (MD) simulation in which 900 hard sphere particles are constrained to move in a rectangle. They interact via perfectly elastic collisions. The system is initialized out of equilibrium, but the velocity distribution (in blue) quickly converges to the 2D Maxwell–Boltzmann distribution (in orange).
Typical speeds
The mean speed , most probable speed (mode) vp, and root-mean-square speed can be obtained from properties of the Maxwell distribution.
The most probable speed, vp, is the speed most likely to be possessed by any molecule (of the same mass m) in the system and corresponds to the maximum value or the mode of f(v). To find it, we calculate the derivative set it to zero and solve for v: with the solution: where:
The mean speed is the expected value of the speed distribution, setting :
The mean square speed is the second-order raw moment of the speed distribution. The "root mean square speed" is the square root of the mean square speed, corresponding to the speed of a particle with average kinetic energy, setting :
In summary, the typical speeds are related as follows:
The root mean square speed is directly related to the speed of soundc in the gas, by
where is the adiabatic index, f is the number of degrees of freedom of the individual gas molecule. For the example above, diatomic nitrogen (approximating air) at 300 K, [note 2] and
the true value for air can be approximated by using the average molar weight of air (29 g/mol), yielding 347 m/s at 300 K (corrections for variable humidity are of the order of 0.1% to 0.6%).
The average relative velocity
where the three-dimensional velocity distribution is
The integral can easily be done by changing to coordinates and
Limitations
The Maxwell–Boltzmann distribution assumes that the velocities of individual particles are much less than the speed of light, i.e. that . For electrons, the temperature of electrons must be .
The original derivation in 1860 by James Clerk Maxwell was an argument based on molecular collisions of the Kinetic theory of gases as well as certain symmetries in the speed distribution function; Maxwell also gave an early argument that these molecular collisions entail a tendency towards equilibrium.[5][6][9] After Maxwell, Ludwig Boltzmann in 1872[10] also derived the distribution on mechanical grounds and argued that gases should over time tend toward this distribution, due to collisions (see H-theorem). He later (1877)[11] derived the distribution again under the framework of statistical thermodynamics. The derivations in this section are along the lines of Boltzmann's 1877 derivation, starting with result known as Maxwell–Boltzmann statistics (from statistical thermodynamics). Maxwell–Boltzmann statistics gives the average number of particles found in a given single-particle microstate. Under certain assumptions, the logarithm of the fraction of particles in a given microstate is linear in the ratio of the energy of that state to the temperature of the system: there are constants and such that, for all ,
The assumptions of this equation are that the particles do not interact, and that they are classical; this means that each particle's state can be considered independently from the other particles' states. Additionally, the particles are assumed to be in thermal equilibrium.[1][12]
This relation can be written as an equation by introducing a normalizing factor:
1
where:
Ni is the expected number of particles in the single-particle microstate i,
N is the total number of particles in the system,
Ei is the energy of microstate i,
the sum over index j takes into account all microstates,
The denominator in equation 1 is a normalizing factor so that the ratios add up to unity — in other words it is a kind of partition function (for the single-particle system, not the usual partition function of the entire system).
Because velocity and speed are related to energy, Equation (1) can be used to derive relationships between temperature and the speeds of gas particles. All that is needed is to discover the density of microstates in energy, which is determined by dividing up momentum space into equal sized regions.
Distribution for the momentum vector
The potential energy is taken to be zero, so that all energy is in the form of kinetic energy.
The relationship between kinetic energy and momentum for massive non-relativistic particles is
2
where p2 is the square of the momentum vector p = [px, py, pz]. We may therefore rewrite Equation (1) as:
The normalizing constant can be determined by recognizing that the probability of a molecule having some momentum must be 1.
Integrating the exponential in equation 4 over all px, py, and pz yields a factor of
So that the normalized distribution function is:
(6)
The distribution is seen to be the product of three independent normally distributed variables , , and , with variance . Additionally, it can be seen that the magnitude of momentum will be distributed as a Maxwell–Boltzmann distribution, with . The Maxwell–Boltzmann distribution for the momentum (or equally for the velocities) can be obtained more fundamentally using the H-theorem at equilibrium within the Kinetic theory of gases framework.
Distribution for the energy
The energy distribution is found imposing
7
where is the infinitesimal phase-space volume of momenta corresponding to the energy interval dE.
Making use of the spherical symmetry of the energy-momentum dispersion relation this can be expressed in terms of dE as
8
Using then (8) in (7), and expressing everything in terms of the energy E, we get
and finally
(9)
Since the energy is proportional to the sum of the squares of the three normally distributed momentum components, this energy distribution can be written equivalently as a gamma distribution, using a shape parameter, and a scale parameter,
Using the equipartition theorem, given that the energy is evenly distributed among all three degrees of freedom in equilibrium, we can also split into a set of chi-squared distributions, where the energy per degree of freedom, ε is distributed as a chi-squared distribution with one degree of freedom,[13]
At equilibrium, this distribution will hold true for any number of degrees of freedom. For example, if the particles are rigid mass dipoles of fixed dipole moment, they will have three translational degrees of freedom and two additional rotational degrees of freedom. The energy in each degree of freedom will be described according to the above chi-squared distribution with one degree of freedom, and the total energy will be distributed according to a chi-squared distribution with five degrees of freedom. This has implications in the theory of the specific heat of a gas.
Distribution for the velocity vector
Recognizing that the velocity probability density fv is proportional to the momentum probability density function by
and using p = mv we get
which is the Maxwell–Boltzmann velocity distribution. The probability of finding a particle with velocity in the infinitesimal element [dvx, dvy, dvz] about velocity v = [vx, vy, vz] is
Like the momentum, this distribution is seen to be the product of three independent normally distributed variables , , and , but with variance .
It can also be seen that the Maxwell–Boltzmann velocity distribution for the vector velocity
[vx, vy, vz] is the product of the distributions for each of the three directions:
where the distribution for a single direction is
Each component of the velocity vector has a normal distribution with mean and standard deviation , so the vector has a 3-dimensional normal distribution, a particular kind of multivariate normal distribution, with mean and covariance , where is the 3 × 3 identity matrix.
Distribution for the speed
The Maxwell–Boltzmann distribution for the speed follows immediately from the distribution of the velocity vector, above. Note that the speed is
and the volume element in spherical coordinates
where and are the spherical coordinate angles of the velocity vector. Integration of the probability density function of the velocity over the solid angles yields an additional factor of .
The speed distribution with substitution of the speed for the sum of the squares of the vector components:
In n-dimensional space
In n-dimensional space, Maxwell–Boltzmann distribution becomes:
Speed distribution becomes:
where is a normalizing constant.
The following integral result is useful:
where is the Gamma function. This result can be used to calculate the moments of speed distribution function:
which is the mean speed itself
^The calculation is unaffected by the nitrogen being diatomic. Despite the larger heat capacity (larger internal energy at the same temperature) of diatomic gases relative to monatomic gases, due to their larger number of degrees of freedom, is still the mean translationalkinetic energy. Nitrogen being diatomic only affects the value of the molar mass M = 28 g/mol.
See e.g. K. Prakashan, Engineering Physics (2001), 2.278.
^Nitrogen at room temperature is considered a "rigid" diatomic gas, with two rotational degrees of freedom additional to the three translational ones, and the vibrational degree of freedom not accessible.
References
^ abMandl, Franz (2008). Statistical Physics. Manchester Physics (2nd ed.). Chichester: John Wiley & Sons. ISBN978-0471915331.
^Young, Hugh D.; Friedman, Roger A.; Ford, Albert Lewis; Sears, Francis Weston; Zemansky, Mark Waldo (2008). Sears and Zemansky's University Physics: With Modern Physics (12th ed.). San Francisco: Pearson, Addison-Wesley. ISBN978-0-321-50130-1.
^N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, San Francisco Press, Inc., 1986, among many other texts on basic plasma physics
^ abMaxwell, J.C. (1860 A): Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Series, vol.19, pp.19–32. [1]
^ abMaxwell, J.C. (1860 B): Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Ser., vol.20, pp.21–37. [2]
^Boltzmann, L., "Weitere studien über das Wärmegleichgewicht unter Gasmolekülen." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Classe, 66, 1872, pp. 275–370.
^Boltzmann, L., "Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe. Abt. II, 76, 1877, pp. 373–435. Reprinted in Wissenschaftliche Abhandlungen, Vol. II, pp. 164–223, Leipzig: Barth, 1909. Translation available at: http://crystal.med.upenn.edu/sharp-lab-pdfs/2015SharpMatschinsky_Boltz1877_Entropy17.pdfArchived 2021-03-05 at the Wayback Machine
^Parker, Sybil P. (1993). McGraw-Hill Encyclopedia of Physics (2nd ed.). McGraw-Hill. ISBN978-0-07-051400-3.
Tipler, Paul Allen; Mosca, Gene (2008). Physics for Scientists and Engineers: with Modern Physics (6th ed.). New York: W.H. Freeman. ISBN978-0-7167-8964-2.
Ives, David J. G. (1971). Chemical Thermodynamics. University Chemistry. Macdonald Technical and Scientific. ISBN0-356-03736-3.
Nash, Leonard K. (1974). Elements of Statistical Thermodynamics. Principles of Chemistry (2nd ed.). Addison-Wesley. ISBN978-0-201-05229-9.
Ward, C. A.; Fang, G. (1999). "Expression for predicting liquid evaporation flux: Statistical rate theory approach". Physical Review E. 59 (1): 429–440. doi:10.1103/physreve.59.429. ISSN1063-651X.
Rahimi, P; Ward, C.A. (2005). "Kinetics of Evaporation: Statistical Rate Theory Approach". International Journal of Thermodynamics. 8 (9): 1–14.
Regulasi (EU) 2016/679 GDPRRegulasi Uni EropaJudulRegulasi (EU) 2016/679 Parlemen Eropa dan Dewan tanggal 27 April 2016 tentang perlindungan orang alami berkaitan dengan pemrosesan data pribadi dan pada pergerakan bebas data tersebut, dan mencabut Direktif 95/46/EC (Regulasi Umum Perlindungan Data)Dibuat oleh Parlemen Eropa dan DewanReferensi jurnalL119, 4/5/2016, p. 1–88Persetujuan EEAYaSejarahTanggal dibuat14 April 2016Tanggal implementasi25 Mei 2018Naskah persiapanProposal KomisiCOM/2012...
تيري إيجلتون (بالإنجليزية: Terry Eagleton) معلومات شخصية الميلاد 22 فبراير 1943 (العمر 80 سنة)سالفورد مواطنة المملكة المتحدة عضو في الأكاديمية البريطانية[1] الحياة العملية المدرسة الأم كلية الثالوث، كامبريدج تعلم لدى ريموند وليامز المهنة ناقد أدبي[2]، وك...
العلاقات النمساوية الإثيوبية النمسا إثيوبيا النمسا إثيوبيا تعديل مصدري - تعديل العلاقات النمساوية الإثيوبية هي العلاقات الثنائية التي تجمع بين النمسا وإثيوبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...
Unincorporated community in California, United States For the community in Humboldt County formerly with this name, see Korbel, Humboldt County, California. For the community in Plumas County formerly with this name, see Seneca, California. Brown's redirects here. For other uses, see Brown (disambiguation). Place in California, United StatesNorth Fork wa?ahhpY'Unincorporated communityCensus-designated placeNorth ForkShow map of CaliforniaNorth ForkShow map of the United StatesCoordinates: 37...
Process and results of human description of features of Venus This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Poor grammar and formatting inconsistent with the rest of Wikipedia. Please help improve this article if you can. (January 2017) (Learn how and when to remove this template message) Global surface of Venus The mapping of Venus refers to the process and results of human description of the geological features of the planet Venus. It invol...
American poker player (born 1977) Phil IveyIvey at the 2009 World Series of PokerNickname(s)Tiger Woods of PokerNo Home JeromeResidenceLas Vegas, Nevada, U.S.BornPhillip Dennis Ivey Jr. (1977-02-01) February 1, 1977 (age 46)Riverside, California, U.S.World Series of PokerBracelet(s)10Final table(s)31Money finish(es)59[1]Highest ITMMain Event finish7th, 2009World Poker TourTitle(s)1Final table(s)9Money finish(es)13European Poker TourTitle(s)NoneFinal table(s)1Money finish(es)3Info...
Left-handed handshake (done with hand nearest to heart) Scout handshakeMexican scouts using the handshake to welcome new members Scouting portal The left-handed Scout handshake is a formal way of greeting other Scouts and is used by members of Scout and Guide organizations around the world. The handshake is made with the hand nearest to the heart and is offered as a token of friendship. In most situations, the handshake is made firmly, without interlocking fingers, and many organization...
Місто Кесон개성시, 開城市 Координати 37°58′ пн. ш. 126°33′ сх. д.H G O Країна Північна КореяПівнічна КореяАдмінодиниця Північна провінція ХванхеПровінція ХванхеКорьоТхебонПопередні назви КайдзеПлоща 1309 км²Висота центру 489 мОфіційна мова корейськаНаселення 201 ...
Sebuah lukisan istana yang menampilkan Kaisar Xuande dari dinasti Ming memainkan chuiwan. Chuiwan (Hanzi: 捶丸; Pinyin: chuíwán) adalah sebuah permainan di Tiongkok kuno. Aturannya mengingatkan pada golf modern. Buku Dongxuan lu (東軒錄), yang diutlis oleh Wei Tai dari dinasti Song, mendeskripsikan bagimana seorang pejabat Tang selatan mengajari putrinya untuk memainkannya.[1] Permainan tersebut menjadi populer pada zaman dinasti Song. Sebuah karya berjudul Wan jing (...
This article is about the Lebanese women's football club. For other uses, see Supergirl. Lebanese women's football club Football clubSuper GirlsFull nameSuper Girls Football ClubFounded29 April 2019; 4 years ago (2019-04-29)ChairmanSahar DboukManagerSahar DboukLeagueLebanese Women's Football League2022–23Lebanese Women's Football League, 8th of 8 (withdrew) Home colours Away colours Super Girls Football Club (Arabic: نـادي سـوبـر غـيـرلـز) is a women's a...
19°54′11.78″N 75°20′15.39″E / 19.9032722°N 75.3376083°E / 19.9032722; 75.3376083 Himayat Bagh Biodiversity Heritage site is a 17th-century garden that now houses the Fruit Research Station and Nursery, which is a part of the Vasantrao Naik Marathwada Krishi Vidyapeeth. It is located near Delhi Gate in Rauza Bagh area of Aurangabad, in the Indian state of Maharashtra. It is a sprawling complex spread over 300 acres (1.2 km2), naturally green and in the ...
2002 child abduction case in the U.S. Kidnapping of Elizabeth SmartSmart's missing person flyer distributed by the Federal Bureau of InvestigationLocationAbduction:Salt Lake City, Utah, U.S.Confinement:Salt Lake City, Utah, and San Diego County, California, U.S.DateJune 5, 2002 (2002-06-05) – March 12, 2003Attack typeKidnapping, child abduction, child rapePerpetrators Brian Mitchell Wanda Barzee MotiveSexual abuse Sentence Mitchell: Life imprisonment without the possibility o...
Ini adalah sebuah nama Indonesia yang tidak menggunakan nama keluarga. Nama Matali adalah sebuah patronimik. Marullah MataliDeputi Gubernur DKI Jakarta(Bidang Budaya dan Pariwisata)PetahanaMulai menjabat 2 Desember 2022GubernurHeru Budi Hartono (Penjabat)PendahuluDadang SolihinSekretaris Daerah DKI JakartaMasa jabatan18 Januari 2021 – 2 Desember 2022GubernurAnies BaswedanHeru Budi Hartono (Penjabat)PendahuluSri Haryati (Plh.)PenggantiUus Kuswanto (Pj.)Pelaksana Tugas Wali Kota ...
Pembatasan penyuntingan Anda diblokir selama-lamanya dari penyuntingan karena akun siluman Aldo samulo. Jika Anda berpikir bahwa Anda sudah memiliki niat baik dan ingin agar blokir Anda dibuka, bacalah evaluasi pemblokiran, lalu tambah teks berikut di halaman pembicaraan Anda: {{buka blokir|reason=Isi alasan Anda di sini~~~~}}. Halo, Albert Christian. Selamat datang di Wikipedia bahasa Indonesia! Memulai Memulai Para pengguna baru dapat melihat halaman Pengantar Wikipedia terlebih dahulu. And...
Fifty centavosPhilippinesValue0.50 Philippine pesoMass3.0 gDiameter17.5 mmEdgePlain (Flora and Fauna Series)Reeded (Improved Flora and Fauna Series)CompositionCopper-nickel (1983–1991)Brass (1991–1994)Years of minting1880–1994ObverseDesignState title, Marcelo H. del Pilar, year of mintingDesign date1991ReverseDesignPithecophaga jefferyi (Philippine eagle), ValueDesign date1991 The Philippine fifty-centavo coin (Filipino: Limampung sentimo) (50¢) was a denomination of Philippi...
Finnish ice hockey player Ice hockey player Markus Nutivaara Nutivaara with Oulun Kärpät in 2014Born (1994-06-06) 6 June 1994 (age 29)Oulu, FinlandHeight 6 ft 1 in (185 cm)Weight 187 lb (85 kg; 13 st 5 lb)Position DefenceShot LeftPlayed for Oulun KärpätColumbus Blue JacketsFlorida PanthersNational team FinlandNHL Draft 189th overall, 2015Columbus Blue JacketsPlaying career 2013–2021 Markus Nutivaara (born 6 June 1994) is a Finnish former...
American politician (1886–1961) Louis C. RabautMember of the U.S. House of Representativesfrom Michigan's 14th districtIn officeJanuary 3, 1935 – January 3, 1947Preceded byCarl M. WeidemanSucceeded byHarold F. YoungbloodIn officeJanuary 3, 1949 – November 12, 1961Preceded byHarold F. YoungbloodSucceeded byHarold M. Ryan Personal detailsBornLouis Charles Rabaut(1886-12-05)December 5, 1886Detroit, Michigan, U.S.DiedNovember 12, 1961(1961-11-12) (aged 74)...