In probability and statistics the extended negative binomial distribution is a discrete probability distribution extending the negative binomial distribution . It is a truncated version of the negative binomial distribution[ 1] for which estimation methods have been studied.[ 2]
In the context of actuarial science , the distribution appeared in its general form in a paper by K. Hess, A. Liewald and K.D. Schmidt[ 3] when they characterized all distributions for which the extended Panjer recursion works. For the case m = 1 , the distribution was already discussed by Willmot[ 4] and put into a parametrized family with the logarithmic distribution and the negative binomial distribution by H.U. Gerber.[ 5]
Probability mass function
For a natural number m ≥ 1 and real parameters p , r with 0 < p ≤ 1 and –m < r < –m + 1 , the probability mass function of the ExtNegBin(m , r , p ) distribution is given by
f
(
k
;
m
,
r
,
p
)
=
0
for
k
∈ ∈ -->
{
0
,
1
,
… … -->
,
m
− − -->
1
}
{\displaystyle f(k;m,r,p)=0\qquad {\text{ for }}k\in \{0,1,\ldots ,m-1\}}
and
f
(
k
;
m
,
r
,
p
)
=
(
k
+
r
− − -->
1
k
)
p
k
(
1
− − -->
p
)
− − -->
r
− − -->
∑ ∑ -->
j
=
0
m
− − -->
1
(
j
+
r
− − -->
1
j
)
p
j
for
k
∈ ∈ -->
N
with
k
≥ ≥ -->
m
,
{\displaystyle f(k;m,r,p)={\frac {{k+r-1 \choose k}p^{k}}{(1-p)^{-r}-\sum _{j=0}^{m-1}{j+r-1 \choose j}p^{j}}}\quad {\text{for }}k\in {\mathbb {N} }{\text{ with }}k\geq m,}
where
(
k
+
r
− − -->
1
k
)
=
Γ Γ -->
(
k
+
r
)
k
!
Γ Γ -->
(
r
)
=
(
− − -->
1
)
k
(
− − -->
r
k
)
(
1
)
{\displaystyle {k+r-1 \choose k}={\frac {\Gamma (k+r)}{k!\,\Gamma (r)}}=(-1)^{k}\,{-r \choose k}\qquad \qquad (1)}
is the (generalized) binomial coefficient and Γ denotes the gamma function .
Probability generating function
Using that f ( . ; m , r , ps ) for s ∈ (0, 1] is also a probability mass function, it follows that the probability generating function is given by
φ φ -->
(
s
)
=
∑ ∑ -->
k
=
m
∞ ∞ -->
f
(
k
;
m
,
r
,
p
)
s
k
=
(
1
− − -->
p
s
)
− − -->
r
− − -->
∑ ∑ -->
j
=
0
m
− − -->
1
(
j
+
r
− − -->
1
j
)
(
p
s
)
j
(
1
− − -->
p
)
− − -->
r
− − -->
∑ ∑ -->
j
=
0
m
− − -->
1
(
j
+
r
− − -->
1
j
)
p
j
for
|
s
|
≤ ≤ -->
1
p
.
{\displaystyle {\begin{aligned}\varphi (s)&=\sum _{k=m}^{\infty }f(k;m,r,p)s^{k}\\&={\frac {(1-ps)^{-r}-\sum _{j=0}^{m-1}{\binom {j+r-1}{j}}(ps)^{j}}{(1-p)^{-r}-\sum _{j=0}^{m-1}{\binom {j+r-1}{j}}p^{j}}}\qquad {\text{for }}|s|\leq {\frac {1}{p}}.\end{aligned}}}
For the important case m = 1 , hence r ∈ (–1, 0) , this simplifies to
φ φ -->
(
s
)
=
1
− − -->
(
1
− − -->
p
s
)
− − -->
r
1
− − -->
(
1
− − -->
p
)
− − -->
r
for
|
s
|
≤ ≤ -->
1
p
.
{\displaystyle \varphi (s)={\frac {1-(1-ps)^{-r}}{1-(1-p)^{-r}}}\qquad {\text{for }}|s|\leq {\frac {1}{p}}.}
References
^ Jonhnson, N.L.; Kotz, S.; Kemp, A.W. (1993) Univariate Discrete Distributions , 2nd edition, Wiley ISBN 0-471-54897-9 (page 227)
^ Shah S.M. (1971) "The displaced negative binomial distribution", Bulletin of the Calcutta Statistical Association , 20, 143–152
^ Hess, Klaus Th.; Anett Liewald; Klaus D. Schmidt (2002). "An extension of Panjer's recursion" (PDF) . ASTIN Bulletin . 32 (2): 283– 297. doi :10.2143/AST.32.2.1030 . MR 1942940 . Zbl 1098.91540 .
^ Willmot, Gordon (1988). "Sundt and Jewell's family of discrete distributions" (PDF) . ASTIN Bulletin . 18 (1): 17– 29. doi :10.2143/AST.18.1.2014957 .
^ Gerber, Hans U. (1992). "From the generalized gamma to the generalized negative binomial distribution". Insurance: Mathematics and Economics . 10 (4): 303– 309. doi :10.1016/0167-6687(92)90061-F . ISSN 0167-6687 . MR 1172687 . Zbl 0743.62014 .
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families