Folded normal distribution

Probability density function
Probability density function for the folded-normal distribution
μ=1, σ=1
Cumulative distribution function
Cumulative distribution function for the normal distribution
μ=1, σ=1
Parameters μR   (location)
σ2 > 0   (scale)
Support x ∈ [0,∞)
PDF
CDF
Mean
Variance

The folded normal distribution is a probability distribution related to the normal distribution. Given a normally distributed random variable X with mean μ and variance σ2, the random variable Y = |X| has a folded normal distribution. Such a case may be encountered if only the magnitude of some variable is recorded, but not its sign. The distribution is called "folded" because probability mass to the left of x = 0 is folded over by taking the absolute value. In the physics of heat conduction, the folded normal distribution is a fundamental solution of the heat equation on the half space; it corresponds to having a perfect insulator on a hyperplane through the origin.

Definitions

Density

The probability density function (PDF) is given by

for x ≥ 0, and 0 everywhere else. An alternative formulation is given by

,

where cosh is the Hyperbolic cosine function. It follows that the cumulative distribution function (CDF) is given by:

for x ≥ 0, where erf() is the error function. This expression reduces to the CDF of the half-normal distribution when μ = 0.

The mean of the folded distribution is then

or

where is the normal cumulative distribution function:

The variance then is expressed easily in terms of the mean:

Both the mean (μ) and variance (σ2) of X in the original normal distribution can be interpreted as the location and scale parameters of Y in the folded distribution.

Properties

Mode

The mode of the distribution is the value of for which the density is maximised. In order to find this value, we take the first derivative of the density with respect to and set it equal to zero. Unfortunately, there is no closed form. We can, however, write the derivative in a better way and end up with a non-linear equation

.

Tsagris et al. (2014) saw from numerical investigation that when , the maximum is met when , and when becomes greater than , the maximum approaches . This is of course something to be expected, since, in this case, the folded normal converges to the normal distribution. In order to avoid any trouble with negative variances, the exponentiation of the parameter is suggested. Alternatively, you can add a constraint, such as if the optimiser goes for a negative variance the value of the log-likelihood is NA or something very small.

  • The characteristic function is given by

.

  • The moment generating function is given by

.

  • The cumulant generating function is given by

.

  • The Laplace transformation is given by

.

  • The Fourier transform is given by

.

  • When μ = 0, the distribution of Y is a half-normal distribution.
  • The random variable (Y/σ)2 has a noncentral chi-squared distribution with 1 degree of freedom and noncentrality equal to (μ/σ)2.
  • The folded normal distribution can also be seen as the limit of the folded non-standardized t distribution as the degrees of freedom go to infinity.
  • There is a bivariate version developed by Psarakis and Panaretos (2001) as well as a multivariate version developed by Chakraborty and Chatterjee (2013).
  • The Rice distribution is a multivariate generalization of the folded normal distribution.
  • Modified half-normal distribution[1] with the pdf on is given as , where denotes the Fox–Wright Psi function.

Statistical Inference

Estimation of parameters

There are a few ways of estimating the parameters of the folded normal. All of them are essentially the maximum likelihood estimation procedure, but in some cases, a numerical maximization is performed, whereas in other cases, the root of an equation is being searched. The log-likelihood of the folded normal when a sample of size is available can be written in the following way

In R (programming language), using the package Rfast one can obtain the MLE really fast (command foldnorm.mle). Alternatively, the command optim or nlm will fit this distribution. The maximisation is easy, since two parameters ( and ) are involved. Note, that both positive and negative values for are acceptable, since belongs to the real line of numbers, hence, the sign is not important because the distribution is symmetric with respect to it. The next code is written in R

folded <- function(y) {

  ## y is a vector with positive data
  n <- length(y)  ## sample size
  sy2 <- sum(y^2)

    sam <- function(para, n, sy2) {
      me <- para[1]   ;   se <- exp( para[2] )
      f <-  - n/2 * log(2/pi/se) + n * me^2 / 2 / se +
            sy2 / 2 / se - sum( log( cosh( me * y/se ) ) )
      f
    }

  mod <- optim( c( mean(y), sd(y) ), n = n, sy2 = sy2, sam, control = list(maxit = 2000) )
  mod <- optim( mod$par, sam, n = n, sy2 = sy2, control = list(maxit = 20000) )
  result <- c( -mod$value, mod$par[1], exp(mod$par[2]) )
  names(result) <- c("log-likelihood", "mu", "sigma squared")
  result

}

The partial derivatives of the log-likelihood are written as

.

By equating the first partial derivative of the log-likelihood to zero, we obtain a nice relationship

.

Note that the above equation has three solutions, one at zero and two more with the opposite sign. By substituting the above equation, to the partial derivative of the log-likelihood w.r.t and equating it to zero, we get the following expression for the variance

,

which is the same formula as in the normal distribution. A main difference here is that and are not statistically independent. The above relationships can be used to obtain maximum likelihood estimates in an efficient recursive way. We start with an initial value for and find the positive root () of the last equation. Then, we get an updated value of . The procedure is being repeated until the change in the log-likelihood value is negligible. Another easier and more efficient way is to perform a search algorithm. Let us write the last equation in a more elegant way

.

It becomes clear that the optimization the log-likelihood with respect to the two parameters has turned into a root search of a function. This of course is identical to the previous root search. Tsagris et al. (2014) spotted that there are three roots to this equation for , i.e. there are three possible values of that satisfy this equation. The and , which are the maximum likelihood estimates and 0, which corresponds to the minimum log-likelihood.

See also

  • Folded cumulative distribution
  • Half-normal distribution
  • Modified half-normal distribution[1] with the pdf on is given as , where denotes the Fox–Wright Psi function.
  • Truncated normal distribution

References

  1. ^ a b Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme" (PDF). Communications in Statistics - Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.

Read other articles:

Untuk album studio JKT48 yang dirilis pada tahun 2016, lihat Mahagita. Mahagita Vol. 2(Kamikyokutachi Vol. 2)Sampul album ini menampilkan Feni, Shani, Gracia, Marsha, Christy, Zee, dan Gracie.Kompilasi terbaik karya JKT48Dirilis27 Oktober 2023 (2023-10-27)Direkam2021-2023GenreJ-pop, Indo PopDurasi51:10BahasaIndonesiaLabelIndonesia Musik NusantaraProduserYasushi AkimotoKronologi JKT48 JOY KICK! TEARS(2019)JOY KICK! TEARS2019 Mahagita Vol. 2(2023) TBAString Module Error: Match not foun...

 

Oliver Bierhoff Oliver Bierhoff (2018) Personalia Geburtstag 1. Mai 1968 Geburtsort Karlsruhe, Deutschland Größe 191 cm Position Sturm Junioren Jahre Station 1974–1978 Essener SG 99/06 1978–1985 Schwarz-Weiß Essen 1985–1986 Bayer 05 Uerdingen Herren Jahre Station Spiele (Tore)1 1986–1988 Bayer 05 Uerdingen 31 0(4) 1988–1990 Hamburger SV 34 0(6) 1990 Borussia M’gladbach 8 0(0) 1990–1991 SV Austria Salzburg 32 (23) 1991–1995 Ascoli Calcio 117 (48) 1995–1998 Udines...

 

Wali Kota MataramLambang Kota MataramPetahanaMohan Roliskanasejak 26 Februari 2021KediamanJl. Gunung Salak No.18 Lingkungan Perigi Kelurahan Ds Agung MataramDibentuk1978Pejabat pertamaDrs. H. Lalu MujitahidSitus webwww.mataramkota.go.id Berikut adalah daftar nama Wali Kota Mataram dari masa ke masa. No. Wali Kota[1] Awal menjabat Akhir menjabat Wakil Wali Kota Keterangan Referensi 1 Drs. H.Lalu Mudjitahid 1978 1989 2 Drs. H. Lalu Mas'ud 1989 1999 3 H. Moh. Ruslan, SH 1999 2005 Dr...

Haus Reinhardtsberg ist ein Weinberghaus im Radebeuler Stadtteil Niederlößnitz in der Oberen Bergstraße 44. Es ist benannt nach dem ehemaligen Besitzer Johann Reinhardt, der das mit Stützmauer und Toreinfahrt denkmalgeschützte[1] Gebäude 1897 erwarb. Das Anwesen liegt im Denkmalschutzgebiet Historische Weinberglandschaft Radebeul.[2] Der Denkmalschutz bestand schon zu DDR-Zeiten. Haus Reinhardtsberg Haus Reinhardtsberg Inhaltsverzeichnis 1 Beschreibung 2 Geschichte 3 Lit...

 

У Вікіпедії є статті про інших людей із прізвищем Савка. Савка Галина МихайлівнаНародилася 4 січня 1956(1956-01-04) (67 років)Богданівка, Волочиський район, Хмельницька область, Українська РСР, СРСРКраїна  УкраїнаДіяльність поетка, акторкаAlma mater Київський національний універ

 

يو-865 الجنسية  ألمانيا النازية الشركة الصانعة شيتشاو-فيرك[1][2][3][4]  المالك  كريغسمارينه المشغل كريغسمارينه (14 ديسمبر 1944–)[1][3][4]  المشغلون الحاليون وسيط property غير متوفر. المشغلون السابقون وسيط property غير متوفر. التكلفة وسيط property غير متوفر. م

MagentaMagenta railway stationGeneral informationLocationMagenta, Milan, LombardyItalyCoordinates45°28′05″N 08°52′51″E / 45.46806°N 8.88083°E / 45.46806; 8.88083Operated byRete Ferroviaria ItalianaLine(s)Turin–MilanDistance30 km (19 mi) from Milano CentralePlatforms2Tracks2Train operatorsTrenordTrenitaliaOther informationFare zoneSTIBM: Mi7[1]ClassificationSilver[2]HistoryOpened1858 June 18; 165 years ago (18-06...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Guido Reni, Josef von Nazaret (1640) Josef, gräzisierend auch Joseph geschrieben (griechisch Ἰωσήφ, entspricht hebräisch יוֹסֵף), ist im Neuen Testament der Bräutigam und spätere Ehemann Marias, der Mutter Jesu. In seiner traditionellen Rolle als Stiefvater, der den Kindheitsgeschichten der Evangelien folgend nicht der biologische Vater Jesu gewesen sei, wird er im christlichen, vorwiegend katholischen Bereich auch als „Ziehvater“ oder „Nährvater“ Jesu bezeichnet. Das...

Species of fish Round goby Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Gobiiformes Family: Gobiidae Genus: Neogobius Species: N. melanostomus Binomial name Neogobius melanostomus(Pallas, 1814) Range of the round goby and introduction sites Synonyms[2][3] Gobius affinis Eichwald, 1831 Gobius cephalarges Pallas, 1814 Gobius chilo Pallas, 1814 Gobius e...

 

Pemilihan umum Bupati Pandeglang 2020201520249 Desember 2020[1]Kandidat Peta persebaran suara Lokasi Kabupaten Pandeglang di Provinsi Banten Bupati dan Wakil Bupati petahanaIrna Narulita dan Tanto Warsono Arban Partai Persatuan Pembangunan Bupati dan Wakil Bupati terpilih belum diketahui Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan umum Kabupaten Pandeglang 2020 (selanjutnya disebut Pilkada Pandeglang 2020 atau Pilbup Pandeglang 2020) adalah pemilih...

 

Protein-coding gene in the species Homo sapiens CCNE1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes1W98IdentifiersAliasesCCNE1, CCNE, pcyclin E1External IDsOMIM: 123837 MGI: 88316 HomoloGene: 14452 GeneCards: CCNE1 Gene location (Human)Chr.Chromosome 19 (human)[1]Band19q12Start29,811,991 bp[1]End29,824,312 bp[1]Gene location (Mouse)Chr.Chromosome 7 (mouse)[2]Band7 B3|7 25.35 cMStart37,797,409 bp[2]End37,806,959 bp[2]...

Television channel BBC FirstLogo used since 2022CountryNetherlandsBroadcast areaNetherlandsBelgiumNetworkBBC BeneluxProgrammingLanguage(s)DutchEnglishPicture format1080i HDTV(downscaled to 16:9 576i for the SDTV feed)OwnershipOwnerBBC StudiosSister channelsBBC OneBBC TwoBBC FourBBC EntertainmentBBC World NewsCBBCCBeebiesHistoryLaunched16 May 2015; 8 years ago (2015-05-16)LinksWebsiteBBCBenelux.comAvailabilityStreaming mediaZiggo GO (Netherlands)ZiggoGO.tv (Europe only)Yelo T...

 

Chinese laundry detergent brand This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (July 2018) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kispa detergent – news · newspapers · books · scholar ...

 

American college football season 2001 Auburn Tigers footballSEC Western Division co-championPeach Bowl, L 10–16 vs. North CarolinaConferenceSoutheastern ConferenceDivisionWestern DivisionRecord7–5 (5–3 SEC)Head coachTommy Tuberville (3rd season)Offensive coordinatorNoel Mazzone (3rd season)Defensive coordinatorJohn Lovett (3rd season)Home stadiumJordan–Hare Stadium(Capacity: 86,063)Seasons← 20002002 → 2001 Southeastern Conference football stan...

Stasiun Saya佐屋駅Stasiun Saya pada Agustus 2012LokasiSaya-cho Sahara 2277, Aisai-shi, Aichi-ken 496-0902JepangKoordinat35°08′52″N 136°43′02″E / 35.1477°N 136.7173°E / 35.1477; 136.7173Koordinat: 35°08′52″N 136°43′02″E / 35.1477°N 136.7173°E / 35.1477; 136.7173Pengelola MeitetsuJalur■ Jalur BisaiLetak dari pangkal4.8 kilometer dari YatomiJumlah peron1 peron samping + 1 peron pulauInformasi lainStatusTanpa stafKode st...

 

Sun Yue Sun Yue (Hanzi: 孙岳; Pinyin: Sūn Yuè; 1878-1928) adalah seorang panglima perang Guominjun dan gubernur di Hebei, Henan dan Shaanxi di berbagai waktu masa jabatan. Sun Yue lahir tahun 1878 di Gaoyang di provinsi Hebei, Republik Rakyat Tiongkok. Setelah Feng Yuxiang memimpin pasukannya untuk menggulingkan Cao Kun dalam kudeta Beijing, Sun diangkat menjadi gubernur sipil di Henan pada 7 November 1924, sebuah jabatan yang dia pegang hingga 29 Agustus 1925. Selanjutnya Sun ber...

 

1950 science fiction short story by Isaac Asimov The Evitable ConflictShort story by Isaac AsimovCountryUnited StatesLanguageEnglishGenre(s)Science fictionPublicationPublished inAstounding Science FictionPublication typePeriodicalPublisherStreet & SmithMedia typePrint (magazine, hardback, paperback)Publication dateJune 1950ChronologySeriesRobot series  Evidence   Robot Dreams The Evitable Conflict is a science fiction short story by American writer Isaac Asimov. It first appeare...

Scottish Premier Division 1991-1992 Competizione Scottish Premier Division Sport Calcio Edizione 95ª Organizzatore SFL Date dal 10 agosto 1991al 2 maggio 1992 Luogo  Scozia Partecipanti 12 Formula Girone all'italiana A/R/A/R Risultati Vincitore Rangers(42º titolo) Retrocessioni St. MirrenDunfermline Statistiche Miglior giocatore Ally McCoist (SPFA, SFWA) Miglior marcatore Ally McCoist (34) Incontri disputati 264 Gol segnati 677 (2,56 per incontro) Cronologia dell...

 

لا يزال النص الموجود في هذه الصفحة في مرحلة الترجمة إلى العربية. إذا كنت تعرف اللغة المستعملة، لا تتردد في الترجمة. (أبريل 2019) إسخاتولوجيا مسيحيةمعلومات عامةصنف فرعي من علم الأخروياتعلم اللاهوت لديه جزء أو أجزاء Four last things (en) تعديل - تعديل مصدري - تعديل ويكي بيانات في اللاهوت ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!