Probability distribution
Type-2 Gumbel Parameters
a
∈ ∈ -->
R
{\displaystyle \ a\in \mathbb {R} \ }
(shape),
b
∈ ∈ -->
R
{\displaystyle \ b\in \mathbb {R} \ }
(scale) Support
0
<
x
<
∞ ∞ -->
{\displaystyle \ 0<x<\infty \ }
PDF
a
b
x
− − -->
a
− − -->
1
e
− − -->
b
x
− − -->
a
{\displaystyle \ a\ b\ x^{-a-1}\ e^{-b\ x^{-a}}\ }
CDF
e
− − -->
b
x
− − -->
a
{\displaystyle \ e^{-b\ x^{-a}}\ }
Quantile
(
− − -->
log
e
(
p
)
b
)
− − -->
1
a
{\displaystyle \ \left(-\ {\frac {\ \log _{e}\!\left(p\right)\ }{b}}\right)^{-{\frac {1}{a}}}\ }
Mean
b
1
a
Γ Γ -->
(
1
− − -->
1
a
)
{\displaystyle \ b^{\frac {1}{a}}\ \Gamma \!\left(\ 1-{\tfrac {\ 1\ }{a}}\ \right)\ }
Variance
b
2
a
Γ Γ -->
(
1
− − -->
1
a
)
(
1
− − -->
Γ Γ -->
(
1
− − -->
1
a
)
)
{\displaystyle \ b^{\frac {2}{a}}\ \Gamma \!\left(1-{\tfrac {\ 1\ }{a}}\ \right){\Bigl (}1-\Gamma \!\left(1-{\tfrac {1}{a}}\right){\Bigr )}\ }
In probability theory , the Type-2 Gumbel probability density function is
f
(
x
|
a
,
b
)
=
a
b
x
− − -->
a
− − -->
1
e
− − -->
b
x
− − -->
a
{\displaystyle \ f(x|a,b)=a\ b\ x^{-a-1}\ e^{-b\ x^{-a}}\quad }
for
x
>
0
.
{\displaystyle \quad x>0~.}
For
0
<
a
≤ ≤ -->
1
{\displaystyle \ 0<a\leq 1\ }
the mean is infinite. For
0
<
a
≤ ≤ -->
2
{\displaystyle \ 0<a\leq 2\ }
the variance is infinite.
The cumulative distribution function is
F
(
x
|
a
,
b
)
=
e
− − -->
b
x
− − -->
a
.
{\displaystyle \ F(x|a,b)=e^{-b\ x^{-a}}~.}
The moments
E
[
X
k
]
{\displaystyle \ \mathbb {E} {\bigl [}X^{k}{\bigr ]}\ }
exist for
k
<
a
{\displaystyle \ k<a\ }
The distribution is named after Emil Julius Gumbel (1891 – 1966).
Generating random variates
Given a random variate
U
{\displaystyle \ U\ }
drawn from the uniform distribution in the interval
(
0
,
1
)
,
{\displaystyle \ (0,1)\ ,}
then the variate
X
=
(
− − -->
ln
-->
U
b
)
− − -->
1
a
{\displaystyle X=\left(-{\frac {\ln U}{b}}\right)^{-{\frac {1}{a}}}\ }
has a Type-2 Gumbel distribution with parameter
a
{\displaystyle \ a\ }
and
b
.
{\displaystyle \ b~.}
This is obtained by applying the inverse transform sampling -method.
Substituting
b
=
λ λ -->
− − -->
k
{\displaystyle \ b=\lambda ^{-k}\ }
and
a
=
− − -->
k
{\displaystyle \ a=-k\ }
yields the Weibull distribution . Note, however, that a positive
k
{\displaystyle \ k\ }
(as in the Weibull distribution) would yield a negative
a
{\displaystyle \ a\ }
and hence a negative probability density, which is not allowed.
Based on "Gumbel distribution" . The GNU Scientific Library . type 002d2, used under GFDL.
See also
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families