Beta negative binomial distribution

Beta Negative Binomial
Parameters shape (real)
shape (real)
— number of successes until the experiment is stopped (integer but can be extended to real)
Support
PMF
Mean
Variance
Skewness
MGF does not exist
CF where is the Pochhammer symbol and is the hypergeometric function.
PGF

In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable  equal to the number of failures needed to get successes in a sequence of independent Bernoulli trials. The probability of success on each trial stays constant within any given experiment but varies across different experiments following a beta distribution. Thus the distribution is a compound probability distribution.

This distribution has also been called both the inverse Markov-Pólya distribution and the generalized Waring distribution[1] or simply abbreviated as the BNB distribution. A shifted form of the distribution has been called the beta-Pascal distribution.[1]

If parameters of the beta distribution are and , and if

where

then the marginal distribution of (i.e. the posterior predictive distribution) is a beta negative binomial distribution:

In the above, is the negative binomial distribution and is the beta distribution.

Definition and derivation

Denoting the densities of the negative binomial and beta distributions respectively, we obtain the PMF of the BNB distribution by marginalization:

Noting that the integral evaluates to:

we can arrive at the following formulas by relatively simple manipulations.

If is an integer, then the PMF can be written in terms of the beta function,:

.

More generally, the PMF can be written

or

.

PMF expressed with Gamma

Using the properties of the Beta function, the PMF with integer can be rewritten as:

.

More generally, the PMF can be written as

.

PMF expressed with the rising Pochammer symbol

The PMF is often also presented in terms of the Pochammer symbol for integer

Properties

Factorial Moments

The k-th factorial moment of a beta negative binomial random variable X is defined for and in this case is equal to

Non-identifiable

The beta negative binomial is non-identifiable which can be seen easily by simply swapping and in the above density or characteristic function and noting that it is unchanged. Thus estimation demands that a constraint be placed on , or both.

Relation to other distributions

The beta negative binomial distribution contains the beta geometric distribution as a special case when either or . It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large . It can therefore approximate the Poisson distribution arbitrarily well for large , and .

Heavy tailed

By Stirling's approximation to the beta function, it can be easily shown that for large

which implies that the beta negative binomial distribution is heavy tailed and that moments less than or equal to do not exist.

Beta geometric distribution

The beta geometric distribution is an important special case of the beta negative binomial distribution occurring for . In this case the pmf simplifies to

.

This distribution is used in some Buy Till you Die (BTYD) models.

Further, when the beta geometric reduces to the Yule–Simon distribution. However, it is more common to define the Yule-Simon distribution in terms of a shifted version of the beta geometric. In particular, if then .

Beta negative binomial as a Pólya urn model

In the case when the 3 parameters and are positive integers, the Beta negative binomial can also be motivated by an urn model - or more specifically a basic Pólya urn model. Consider an urn initially containing red balls (the stopping color) and blue balls. At each step of the model, a ball is drawn at random from the urn and replaced, along with one additional ball of the same color. The process is repeated over and over, until red colored balls are drawn. The random variable of observed draws of blue balls are distributed according to a . Note, at the end of the experiment, the urn always contains the fixed number of red balls while containing the random number blue balls.

By the non-identifiability property, can be equivalently generated with the urn initially containing red balls (the stopping color) and blue balls and stopping when red balls are observed.


See also

Notes

  1. ^ a b Johnson et al. (1993)

References

  • Johnson, N.L.; Kotz, S.; Kemp, A.W. (1993) Univariate Discrete Distributions, 2nd edition, Wiley ISBN 0-471-54897-9 (Section 6.2.3)
  • Kemp, C.D.; Kemp, A.W. (1956) "Generalized hypergeometric distributions, Journal of the Royal Statistical Society, Series B, 18, 202–211
  • Wang, Zhaoliang (2011) "One mixed negative binomial distribution with application", Journal of Statistical Planning and Inference, 141 (3), 1153-1160 doi:10.1016/j.jspi.2010.09.020

Read other articles:

New Zealand mayoral election 1983 Wellington City mayoral election ← 1980 8 October 1983 1986 → Turnout38,856 (37.59%)   Candidate Ian Lawrence Helene Ritchie Party Citizens' Labour Popular vote 19,952 11,876 Percentage 49.28 30.56 Mayor before election Sir Michael Fowler Elected Mayor Ian Lawrence The 1983 Wellington City mayoral election was part of the New Zealand local elections held that same year. In 1983, elections were held for the Mayor of Wellington p...

 

Bilateral school in Rugby, Warwickshire, England Ashlawn SchoolAshlawn SchoolAddressAshlawn RoadRugby, Warwickshire, CV22 5ETEnglandCoordinates52°21′26″N 1°13′52″W / 52.35723°N 1.23124°W / 52.35723; -1.23124InformationTypeBilateral school;AcademyMottoPer ScientiamEstablished1952 (formerly Dunsmore School)FounderKathleen Hughes (Headteacher)Local authorityWarwickshireTrustTLETDepartment for Education URN136587 TablesOfstedReportsPrincipalPaul BrockwellStaffA...

 

El gran príncipe Árpád cruzando los Cárpatos. Un detalle de la Llegada de los húngaros, el vasto ciclorama de Árpád Feszty y sus ayudantes (1800 m²), pintado para celebrar el 1000.º aniversario de la conquista magiar de Hungría, ahora expuesto en el Parque Nacional del Patrimonio de Ópusztaszer en Hungría. La historia de Hungría antes de la conquista húngara abarca el período anterior a la conquista magiar (húngara) en el siglo IX de los territorios que se convertirían e...

داربران تقسيم إداري البلد إيران  [1] إحداثيات 36°24′56″N 45°21′55″E / 36.41555556°N 45.36527778°E / 36.41555556; 45.36527778  السكان التعداد السكاني 40 نسمة (إحصاء 2016) الرمز الجغرافي 6676850  تعديل مصدري - تعديل   داربران هي قرية في مقاطعة سردشت، إيران.[2] يقدر عدد سكانها بـ 40 نس...

 

دلبرتمعلومات عامةالنوع الفني الفكاهةالفكاهة في المكتبهجاء الصانع سكوت آدامز المُؤَلِّف سكوت آدامز الناشر Andrews McMeel Publishing (en) تاريخ البدء 16 أبريل 1989 يحدث في العالم الخيالي Dilbert universe (en) موقع الويب dilbert.com تعديل - تعديل مصدري - تعديل ويكي بيانات دلبرت (بالإنجليزية: Dilbert)‏ هو شخصية

 

Nuri Andrianis DjatmikaStaf Khusus Kasal Informasi pribadiLahir12 Mei 1966 (umur 57)IndonesiaAlma materAkademi Angkatan Laut (1989)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan LautMasa dinas1989—sekarangPangkat Brigadir Jenderal TNINRP9655/PSatuanKorps MarinirSunting kotak info • L • B Brigadir Jenderal TNI (Mar) Nuri Andrianis Djatmika (lahir 12 Mei 1966) adalah seorang perwira tinggi TNI-AL yang menjabat sebagai Staf Khusus kasal Nuri merupakan lulus...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Makkal Sakthi – news · newspapers · books · scholar · JSTOR (April 2011) (Learn how and when to remove this template message)...

 

Unincorporated community Carbonton Dam before its destruction in 2005. The powerhouse remains extant. Carbonton is an unincorporated community in southwestern Chatham County, North Carolina, United States, along the Deep River. The community lies near the point where Chatham, Lee, and Moore counties intersect one another. The community derived its name from the local coal industry that thrived nearby until the early 20th century.[1] A dam was erected on the Deep River in Carbonton in ...

 

Private Roman Catholic university in Madrid, Spain This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Universidad CEU San Pablo – news · newspapers · books · scholar · JSTOR (December 2010) (Learn how and when to remove this template message) CEU San Pablo UniversityUniversidad CEU San PabloTypePrivateEstablished1993AffiliationC...

Upper house of the Arkansas General Assembly This article needs to be updated. Please help update this article to reflect recent events or newly available information. (January 2023) Arkansas Senate94th Arkansas General AssemblyState sealTypeTypeUpper house Term limitsMembers first elected on or before November 3, 2020: 16 years (consecutive or non-consecutive, both houses), eligible to run again 4 years after their last term ends. Members first elected after November 3, 2020: 12 years (conse...

 

Term for heavily hairy, and usually muscular and bearded menThis article is about the concept of bears within gay culture. For other uses, see Bear (disambiguation).The International Bear Brotherhood Flag, the pride flag of the bear community. Craig Byrnes created this flag in 1995.[1] In gay culture, a bear is a larger and often hairier man who projects an image of rugged masculinity. The bear concept can function as an identity or an affiliation, and there is ongoing debate in bear ...

 

Building by Le Corbusier in Chandigarh, India Palace of AssemblyLocation within ChandigarhGeneral informationLocationChandigarhCountry IndiaCoordinates30°45′40″N 76°48′11″E / 30.76111°N 76.80306°E / 30.76111; 76.80306Construction started1951Completed1962Inaugurated15 April 1964Design and constructionArchitect(s)Le Corbusier UNESCO World Heritage SiteOfficial nameThe Architectural Work of Le Corbusier, an Outstanding Contribution to the Modern MovementD...

Female name of several Greek mythological figures Greek deitiesseries Primordial deities Titans and Olympians Chthonic deities Personified concepts Water deities Amphitrite Ceto Glaucus Nereus Oceanus Phorcys Pontus Poseidon Potamoi Proteus Tethys Thetis Triton Nymphs Alseid Anthousai Auloniad Aurae Crinaeae Daphnaie Dryads Eleionomae Epimeliads Hamadryads Hesperides Hyades Lampads Leimakids Limnades Meliae Melinoë Naiads Napaeae Nephele Nereids Oceanids Oreads Pegaeae Pegasides Pleiades Pot...

 

American TV series or program The Magic Windowpromotional photo of Betty Lou Varnum in The House with the Magic WindowStarringBetty Lou VarnumCountry of originUnited StatesProductionRunning time30 minutes per episodeOriginal releaseNetworkABC affiliate WOI-TV, Ames, IowaRelease1951 (1951) –1994 (1994) The Magic Window (also known as The House with the Magic Window) was an American children's television program broadcast on ABC affiliate WOI-TV in Ames, Iowa from 1951 to ...

 

For the song by Olivia, see So Sexy (Olivia song). 2004 single by Twista featuring R. KellySo SexySingle by Twista featuring R. Kellyfrom the album Kamikaze ReleasedJuly 22, 2004Recorded2003Genre Hip hop R&B Length3:51LabelAtlanticSongwriter(s) Carl Mitchell Robert Kelly Producer(s)R. KellyTwista singles chronology Overnight Celebrity(2004) So Sexy(2004) Sunshine(2004) R. Kelly singles chronology Hotel(2003) So Sexy(2004) Happy People(2004) So Sexy is a song by American rapper Twi...

Fundamental law of Transnistria Politics of Transnistria Constitution Executive PresidentVadim Krasnoselsky Prime MinisterAleksandr Martynov LegislatureSupreme Council Speaker Alexander Korshunov Political parties Elections Recent elections Presidential: 20162021 Parliamentary: 20152020 Referendums Administrative divisions Five Raions One Municipality Foreign relations Ministry of Foreign Affairs Minister: Vitaly Ignatyev Political status International recognition Human rights in Transnistria...

 

For the equivalent formation in World War I, see I Corps (German Empire). I Army CorpsI. ArmeekorpsActive1934–1945Country GermanyBranchArmySizeCorpsGarrison/HQKönigsbergColorsBlack & WhiteEngagementsWorld War II → Invasion of Poland Battle of Mława Battle of Różan Siege of Warsaw → Battle of France → Eastern Front Courland Pocket CommandersNotablecommandersWalter Petzel, Kuno-Hans von Both, Philipp Kleffel, Otto Wöhler, Martin Grase, Carl Hilpert, Walter Hartmann, Theodo...

 

Richard DawkinsFRS FRSLDawkins di Cooper Union, Kota New York (2010)LahirClinton Richard Dawkins26 Maret 1941 (umur 82)Nairobi, Kenya BritaniaWarga negaraBritania RayaPendidikanOundle SchoolAlmamaterUniversitas Oxford (MA, DPhil)Dikenal atas Teori gen egois Konsep meme Dunia Pertengahan Ekstensi fenotipe Dukungan terhadap sains; kritik terhadap agama; Ateisme Baru[1] Suami/istri Marian Stamp ​ ​(m. 1967; c. 1984)​ Eve Barham (n....

Traditional song Northumberland Betrayed By DouglasNorthumberland Betrayed By Douglas, a ballad which centres on Thomas Percy, 7th Earl of Northumberland, and his escape with his wife, to ScotlandSongPublishedc. 1765[1]Songwriter(s)Unknown Northumberland Betrayed By Douglas (also Northumberland Betrayed by Dowglas) is Child ballad 176. It has a Roud Folk Song Index number of 4006. It tells of the Seventh Earl of Northumberland fleeing to Scotland.[1] Synopsis The Earl of North...

 

Elio Aggiano Datos personalesNacimiento Brindisi (Italia)15 de marzo de 1972País Italia ItaliaNacionalidad(es) ItalianaCarrera deportivaDeporte CiclistaDisciplina CarreteraTrayectoria Equipos profesionales 19971998-20002001-200220032004-20062007 Ceramiche Refin - Mobilvetta Vitalicio SegurosMapeiFormaggi PinzoloTeam LPRTinkoff Credit Systems [editar datos en Wikidata] Elio Aggiano, nacido el 15 de marzo de 1972 en Brindisi, es un antiguo ciclista italiano. Palmarés 1996 Trofe...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!