Generalized beta distribution

In probability and statistics, the generalized beta distribution[1] is a continuous probability distribution with four shape parameters, including more than thirty named distributions as limiting or special cases. A fifth parameter for scaling is sometimes included, while a sixth parameter for location is customarily left implicit and excluded from the characterization. The distribution has been used in the modeling of income distribution, stock returns, as well as in regression analysis. The exponential generalized beta (EGB) distribution follows directly from the GB and generalizes other common distributions.

Definition

A generalized beta random variable, Y, is defined by the following probability density function (pdf):

and zero otherwise. Here the parameters satisfy , and , , and positive. The function B(p,q) is the beta function. The parameter is the scale parameter and can thus be set to without loss of generality, but it is usually made explicit as in the function above. The location parameter (not included in the formula above) is usually left implicit and set to .

GB distribution tree

Properties

Moments

It can be shown that the hth moment can be expressed as follows:

where denotes the hypergeometric series (which converges for all h if c < 1, or for all h / a < q if c = 1 ).

The generalized beta encompasses many distributions as limiting or special cases. These are depicted in the GB distribution tree shown above. Listed below are its three direct descendants, or sub-families.

Generalized beta of first kind (GB1)

The generalized beta of the first kind is defined by the following pdf:

for where , , and are positive. It is easily verified that

The moments of the GB1 are given by

The GB1 includes the beta of the first kind (B1), generalized gamma(GG), and Pareto as special cases:

Generalized beta of the second kind (GB2)

The GB2 is defined by the following pdf:

for and zero otherwise. One can verify that

The moments of the GB2 are given by

The GB2 is also known as the Generalized Beta Prime (Patil, Boswell, Ratnaparkhi (1984)),[2] the transformed beta (Venter, 1983),[3] the generalized F (Kalfleisch and Prentice, 1980),[4] and is a special case (μ≡0) of the Feller-Pareto (Arnold, 1983)[5] distribution. The GB2 nests common distributions such as the generalized gamma (GG), Burr type 3, Burr type 12, Dagum, lognormal, Weibull, gamma, Lomax, F statistic, Fisk or Rayleigh, chi-square, half-normal, half-Student's t, exponential, asymmetric log-Laplace, log-Laplace, power function, and the log-logistic.[6]

Beta

The beta family of distributions (B) is defined by:[1]

for and zero otherwise. Its relation to the GB is seen below:

The beta family includes the beta of the first and second kind[7] (B1 and B2, where the B2 is also referred to as the Beta prime), which correspond to c = 0 and c = 1, respectively. Setting , yields the standard two-parameter beta distribution.

Generalized Gamma

The generalized gamma distribution (GG) is a limiting case of the GB2. Its PDF is defined by:[8]

with the th moments given by

As noted earlier, the GB distribution family tree visually depicts the special and limiting cases (see McDonald and Xu (1995) ).

Pareto

The Pareto (PA) distribution is the following limiting case of the generalized gamma:

for and otherwise.

Power

The power (P) distribution is the following limiting case of the generalized gamma:

which is equivalent to the power function distribution for and .

Asymmetric Log-Laplace

The asymmetric log-Laplace distribution (also referred to as the double Pareto distribution [9]) is defined by:[10]

where the th moments are given by

When , this is equivalent to the log-Laplace distribution.

Exponential generalized beta distribution

Letting (without location parameter), the random variable , with re-parametrization and , is distributed as an exponential generalized beta (EGB), with the following pdf:

for , and zero otherwise. The EGB includes generalizations of the Gompertz, Gumbel, extreme value type I, logistic, Burr-2, exponential, and normal distributions. The parameter is the location parameter of the EGB (while is the scale parameter of the GB), and is the scale parameter of the EGB (while is a shape parameter of the GB); The EGB has thus three shape parameters.

Included is a figure showing the relationship between the EGB and its special and limiting cases.[11]

The EGB family of distributions

Moment generating function

Using similar notation as above, the moment-generating function of the EGB can be expressed as follows:

Multivariate generalized beta distribution

A multivariate generalized beta pdf extends the univariate distributions listed above. For variables , define parameter vectors by , , , and where each and is positive, and . The parameter is assumed to be positive, and define the function = for = .

The pdf of the multivariate generalized beta () may be written as follows:

where for and when = .

Like the univariate generalized beta distribution, the multivariate generalized beta includes several distributions in its family as special cases. By imposing certain constraints on the parameter vectors, the following distributions can be easily derived.[12]

Multivariate generalized beta of the first kind (MGB1)

When each is equal to 0, the MGB function simplifies to the multivariate generalized beta of the first kind (MGB1), which is defined by:

where .

Multivariate generalized beta of the second kind (MGB2)

In the case where each is equal to 1, the MGB simplifies to the multivariate generalized beta of the second kind (MGB2), with the pdf defined below:

when for all .

Multivariate generalized gamma

The multivariate generalized gamma (MGG) pdf can be derived from the MGB pdf by substituting = and taking the limit as , with Stirling's approximation for the gamma function, yielding the following function:

which is the product of independently but not necessarily identically distributed generalized gamma random variables.

Other multivariate distributions

Similar pdfs can be constructed for other variables in the family tree shown above, simply by placing an M in front of each pdf name and finding the appropriate limiting and special cases of the MGB as indicated by the constraints and limits of the univariate distribution. Additional multivariate pdfs in the literature include the Dirichlet distribution (standard form) given by , the multivariate inverted beta and inverted Dirichlet (Dirichlet type 2) distribution given by , and the multivariate Burr distribution given by .

Marginal density functions

The marginal density functions of the MGB1 and MGB2, respectively, are the generalized beta distributions of the first and second kind, and are given as follows:

Applications

The flexibility provided by the GB family is used in modeling the distribution of:

  • distribution of income
  • hazard functions
  • stock returns
  • insurance losses

Applications involving members of the EGB family include:[1][6]

  • partially adaptive estimation of regression models
  • time series models
  • (G)ARCH models

Distribution of Income

The GB2 and several of its special and limiting cases have been widely used as models for the distribution of income. For some early examples see Thurow (1970),[13] Dagum (1977),[14] Singh and Maddala (1976),[15] and McDonald (1984).[6] Maximum likelihood estimations using individual, grouped, or top-coded data are easily performed with these distributions.

Measures of inequality, such as the Gini index (G), Pietra index (P), and Theil index (T) can be expressed in terms of the distributional parameters, as given by McDonald and Ransom (2008):[16]

Hazard Functions

The hazard function, h(s), where f(s) is a pdf and F(s) the corresponding cdf, is defined by

Hazard functions are useful in many applications, such as modeling unemployment duration, the failure time of products or life expectancy. Taking a specific example, if s denotes the length of life, then h(s) is the rate of death at age s, given that an individual has lived up to age s. The shape of the hazard function for human mortality data might appear as follows: decreasing mortality in the first few months of life, then a period of relatively constant mortality and finally an increasing probability of death at older ages.

Special cases of the generalized beta distribution offer more flexibility in modeling the shape of the hazard function, which can call for "∪" or "∩" shapes or strictly increasing (denoted by I}) or decreasing (denoted by D) lines. The generalized gamma is "∪"-shaped for a>1 and p<1/a, "∩"-shaped for a<1 and p>1/a, I-shaped for a>1 and p>1/a and D-shaped for a<1 and p>1/a.[17] This is summarized in the figure below.[18][19]

Possible hazard function shapes using the generalized gamma

References

  1. ^ a b c McDonald, James B. & Xu, Yexiao J. (1995) "A generalization of the beta distribution with applications," Journal of Econometrics, 66(1–2), 133–152 doi:10.1016/0304-4076(94)01612-4
  2. ^ Patil, G.P., Boswell, M.T., and Ratnaparkhi, M.V., Dictionary and Classified Bibliography of Statistical Distributions in Scientific Work Series, editor G.P. Patil, Internal Co-operative Publishing House, Burtonsville, Maryland, 1984.
  3. ^ Venter, G., Transformed beta and gamma distributions and aggregate losses, Proceedings of the Casualty Actuarial Society, 1983.
  4. ^ Kalbfleisch, J.D. and R.L. Prentice, The Statistical Analysis of Failure Time Data, New York: J. Wiley, 1980
  5. ^ Arnold, B.C., Pareto Distributions, Volume 5 in Statistical Distributions in Scientific Work Series, International Co-operative Publishing House, Burtonsville, Md. 1983.
  6. ^ a b c McDonald, J.B. (1984) "Some generalized functions for the size distributions of income", Econometrica 52, 647–663.
  7. ^ Stuart, A. and Ord, J.K. (1987): Kendall's Advanced Theory of Statistics, New York: Oxford University Press.
  8. ^ Stacy, E.W. (1962). "A Generalization of the Gamma Distribution." Annals of Mathematical Statistics 33(3): 1187-1192. JSTOR 2237889
  9. ^ Reed, W.J. (2001). "The Pareto, Zipf, and other power laws." Economics Letters 74: 15-19. doi:10.1016/S0165-1765(01)00524-9
  10. ^ Higbee, J.D., Jensen, J.E., and McDonald, J.B. (2019). "The asymmetric log-Laplace distribution as a limiting case of the generalized beta distribution."Statistics and Probability Letters 151: 73-78. doi:10.1016/j.spl.2019.03.018
  11. ^ McDonald, James B. & Kerman, Sean C. (2013) "Skewness-Kurtosis Bounds for EGB1, EGB2, and Special Cases," Forthcoming
  12. ^ William M. Cockriel & James B. McDonald (2017): Two multivariate generalized beta families, Communications in Statistics - Theory and Methods, doi:10.1080/03610926.2017.1400058
  13. ^ Thurow, L.C. (1970) "Analyzing the American Income Distribution," Papers and Proceedings, American Economics Association, 60, 261-269
  14. ^ Dagum, C. (1977) "A New Model for Personal Income Distribution: Specification and Estimation," Economie Applique'e, 30, 413-437
  15. ^ Singh, S.K. and Maddala, G.S (1976) "A Function for the Size Distribution of Incomes," Econometrica, 44, 963-970
  16. ^ McDonald, J.B. and Ransom, M. (2008) "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality", Modeling the Distributions and Lorenz Curves, "Economic Studies in Inequality: Social Exclusion and Well-Being", Springer: New York editor Jacques Silber, 5, 147-166
  17. ^ Glaser, Ronald E. (1980) "Bathtub and Related Failure Rate Characterizations," Journal of the American Statistical Association, 75(371), 667-672 doi:10.1080/01621459.1980.10477530
  18. ^ McDonald, James B. (1987) "A general methodology for determining distributional forms with applications in reliability," Journal of Statistical Planning and Inference, 16, 365-376 doi:10.1016/0378-3758(87)90089-9
  19. ^ McDonald, J.B. and Richards, D.O. (1987) "Hazard Functions and Generalized Beta Distributions", IEEE Transactions on Reliability, 36, 463-466

Bibliography

  • C. Kleiber and S. Kotz (2003) Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley
  • Johnson, N. L., S. Kotz, and N. Balakrishnan (1994) Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience.

Read other articles:

Robert Thalmann Plaats uw zelfgemaakte foto hier Persoonlijke informatie Volledige naam Robert Thalmann Geboortedatum 1 februari 1949 Geboorteplaats Menznau, Zwitserland Overlijdensdatum 23 mei 2017 Overlijdensplaats Bormio, Italië Nationaliteit  Zwitserland Sportieve informatie Discipline(s) Weg Ploegen 197319751977 AllegroGS AllegroAllegro Portaal    Wielersport Robert Thalmann (Menznau, 1 februari 1949 - Bormio, 23 mei 2017) was een Zwitsers wielrenner. Carrière Thalmann w...

 

Rumkale Rum Kalesi (Euphratseite, September 2006) Rum Kalesi (Euphratseite, September 2006) Alternativname(n) Rum Kalesi, Hromkla(y), Rum kalesi, Ρωμαιων Κουλα, Qal'at ar-Rum, Ranculat Staat Türkei Erhaltungszustand Ruine Geographische Lage 37° 16′ N, 37° 50′ O37.27077777777837.837916666667Koordinaten: 37° 16′ 14,8″ N, 37° 50′ 16,5″ O Rumkale (Türkei) p3 Rumkale (Rum Kalesi „Römerfestung“, im türkischen...

 

French traditionalist Catholic priest This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Louis-Marie de Blignières – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to r...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Aygün KazımovaNama lainAygun KazimovaLahir26 Januari 1971 (umur 52)AsalBaku, RSS Azerbaijan, Uni SovietGenrePop, R&BPekerjaanPenyanyi, pemeran, penariTahun aktif1988–sekarang Aygun Kazimova, atau yang juga dikenal dengan Aygün Kazımova ...

 

إمبراطور اليابان الـ114 الإمبراطور ناكاميكادو (باليابانية: 中御門天皇)‏    إمبراطور اليابان الـ114 فترة الحكم1709-1735 معلومات شخصية الميلاد يناير 14، 1702كيوتو  الوفاة 10 مايو، 1737 (عمر 35)كيوتو  مكان الدفن تسوكينوا نو ميساساغي (كيوتو) مواطنة شوغونية توكوغاوا اليابان  الأولا

 

United States historic placeFounder's HallU.S. National Register of Historic Places Show map of MassachusettsShow map of the United StatesLocationLancaster, MassachusettsCoordinates42°26′42″N 71°41′10″W / 42.44500°N 71.68611°W / 42.44500; -71.68611Arealess than one acreBuilt1883ArchitectBarker & NourseArchitectural styleGothic Revival, Queen AnneNRHP reference No.80001678 [1]Added to NRHPApril 14, 1980 Founder's Hall, also known a...

Business conglomerate in Turkey Alarko Holding A.Ş.TypeAnonim ŞirketTraded asBİST: ALARKFoundedIstanbul, Turkey (1954 (1954))Founderİshak Alaton and Üzeyir GarihWebsitehttp://www.alarko.com.tr Alarko Holding is one of the largest business conglomerates in Turkey; it is listed on the Istanbul Stock Exchange. It operates in a variety of sectors, including construction, electricity generation and distribution, tourism, and real estate.[1] It was founded by İshak Alaton and Üz...

 

Untuk pengertian lain, lihat Bato. Bato adalah munisipalitas kelas 5 di Catanduanes, Filipina. Menurut sensus tahun 2007, Bato berpenduduk 18.738 jiwa atau 3.497 rumah tangga.[1] Geografi Pembagian wilayah Secara politis Bato terbagi atas 27 barangay, yaitu:[2] Barangay Penduduk(2007) Aroyao Pequeño 167 Bagumbayan 369 Banawang 553 Batalay 1,168 Binanwahan 1,707 Bote 1,100 Buenavista 380 Cabugao 2,888 Cagraray 534 Carorian 441 Guinobatan 908 Libjo 374 Marinawa 451 Mintay 393 O...

 

Cistercian chronicler Alberic of Trois-Fontaines (French: Aubri or Aubry de Trois-Fontaines; Latin: Albericus Trium Fontium) (died c. 1252) was a medieval Cistercian chronicler who wrote in Latin. He was a monk of Trois-Fontaines Abbey in the diocese of Châlons-sur-Marne. He died after 1252. He wrote a chronicle describing world events from the Creation to the year 1241. Life and works Alberic was likely from a noble Liège family which could afford a good education for him. He became a monk...

British Army general Sir Anthony Farrar-HockleyAppearing with Bernadette McAliskey on After Dark, 18 March 1988: Licensed to Kill?Birth nameAnthony Heritage Farrar-HockleyNickname(s)Farrar the ParaBorn(1924-04-08)8 April 1924Coventry, Warwickshire, EnglandDied11 March 2006(2006-03-11) (aged 81)Moulsford, Oxfordshire, EnglandBuriedSt John the Baptist, MoulsfordAllegianceUnited KingdomService/branchBritish ArmyYears of service1941–1982RankGeneralService number251309UnitGloucestershi...

 

PT Tiga Visi UtamaNama dagangMPG MediaJenisPublikIndustriMediaPendahuluMilestone Pacific GroupDidirikan2001; 21 tahun lalu (2001)PendiriJulius RuslanKantorpusatJakarta, IndonesiaTokohkunciDenise TjokrosaputroSistha Alicia TjokrosaputroProdukRadioSitus onlinePenerbitanPeriklananManajemen artisPemilikParamount EnterpriseSitus webwww.mpgmedia.co.id MPG Media merupakan salah satu perusahaan penerbitan dengan pertumbuhan tercepat di kawasan ini, MPG Media Publishing menciptakan konten untuk b...

 

Train station in Elko, Nevada Elko, NVElko's westbound passenger platformGeneral informationLocation1300 Water Street(westbound)1301 Sharps Access Road(eastbound)Elko, Nevada 89801[1]United StatesCoordinates40°50′11″N 115°45′01″W / 40.8364°N 115.7502°W / 40.8364; -115.7502Owned byUnion Pacific Railroad[2]Platforms2 side platformsTracks2ConstructionStructure typeAt-gradeParking20 long term spaces[1]AccessibleYesOther informationStatio...

Australian rules amateur football club This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (December 2016) (Learn how and when to remove this template message) The BlacksNamesFull nameAdelaide University Football ClubNickname(s)The Blacks AUFC UniMottoThe World's Greatest Football ClubClub songGreen Ginger WineA Grade 2022 seasonAfter finalsMen - 8th; Wo...

 

2007 pinball machine Not to be confused with The Amazing Spider-Man (pinball). The topic of this article may not meet Wikipedia's notability guidelines for products and services. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Spider-Man...

 

Bagian dari seriIslam Rukun Iman Keesaan Allah Nabi dan Rasul Allah Kitab-kitab Allah Malaikat Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...

Heavy cruiser of the Suffren class For other ships with the same name, see French ship Colbert. Colbert History France NameColbert NamesakeJean Baptiste Colbert BuilderArsenal de Brest Laid down12 June 1927 Launched20 April 1928 Completed4 March 1931 Commissioned11 November 1929 In service1 April 1931 Out of servicescuttled at Toulon, 27 November 1942 FateScrapped 1948 General characteristics Class and typeSuffren-class cruiser Type Treaty Cruiser Marine National designation 1925 Light Cruise...

 

Namco NetworksTypeDivision (Defunct)IndustryMobile gameFoundedJanuary 1, 2006FounderToshihiro NagoshiDefunct2011; 12 years ago (2011)FateMerged with Namco Bandai GamesHeadquartersSan Jose, California, United StatesOwnerBandai Namco HoldingsWebsitewww.namcogames.com Namco Networks was an American developer and publisher of video games for mobile phones, based in San Jose, California. The company was founded on January 1, 2006, as the mobile phone division of Namco America, an...

 

У этого термина существуют и другие значения, см. Ёж (значения). Обыкновенный ёж Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстноротые...

Halaman artikel ini diterjemahkan, sebagian atau seluruhnya, dari halaman di en.wikipedia yang berjudul (Tolong cantumkan nama artikel sumber terjemahan). Lihat pula sejarah suntingan halaman aslinya untuk melihat daftar penulisnya. Santa UrsulaPerawan dan MartirMeninggaltarikh wafat berbeda-beda menurut keterangan para pujangga, yakni 238, 283, 383, 451, dan 640.Dihormati diGereja KatolikGereja OrtodoksTempat ziarahGereja Santa Ursula, KölnPestaOctober 21Atributanak panah; panji; jubah; jam...

 

SumberjatiDesaPeta lokasi Desa SumberjatiNegara IndonesiaProvinsiJawa TimurKabupatenLumajangKecamatanTempehKode pos67371Kode Kemendagri35.08.05.2002 Luas- km²Jumlah penduduk- jiwaKepadatan- Sumberjati adalah sebuah desa di Kecamatan Tempeh, Kabupaten Lumajang, provinsi Jawa Timur, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan, dan Pulau tahun 2021 (Indonesia) Per...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!