The inverted Dirichlet distribution is conjugate to the negative multinomial distribution if a generalized form of odds ratio is used instead of the categories' probabilities- if the negative multinomial parameter vector is given by , by changing parameters of the negative multinomial to where .
T. Bdiri et al. have developed several models that use the inverted Dirichlet distribution to represent and model non-Gaussian data. They have introduced finite [3][4] and infinite [5]mixture models of inverted Dirichlet distributions using the Newton–Raphson technique to estimate the parameters and the Dirichlet process to model infinite mixtures.
T. Bdiri et al. have also used the inverted Dirichlet distribution to propose an approach to generate Support Vector Machine kernels [6] basing on Bayesian inference and another approach to establish hierarchical clustering.[7][8]
^Bdiri, Taoufik; Bouguila, Nizar; Ziou, Djemel (2014). "Object clustering and recognition using multi-finite mixtures for semantic classes and hierarchy modeling". Expert Systems with Applications. 41 (4): 1218–1235. doi:10.1016/j.eswa.2013.08.005.
^Bdiri, Taoufik; Bouguila, Nizar; Ziou, Djemel (2013). "Visual Scenes Categorization Using a Flexible Hierarchical Mixture Model Supporting Users Ontology". 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. pp. 262–267. doi:10.1109/ICTAI.2013.48. ISBN978-1-4799-2972-6. S2CID1236111.