Zeta distribution

zeta
Probability mass function
Plot of the Zeta PMF
Plot of the Zeta PMF on a log-log scale. (The function is only defined at positive integer values of k. The connecting lines do not indicate continuity.)
Cumulative distribution function
Plot of the Zeta CMF
Parameters
Support
PMF
CDF
Mean
Mode
Variance
Entropy
MGF does not exist
CF
PGF

In probability theory and statistics, the zeta distribution is a discrete probability distribution. If X is a zeta-distributed random variable with parameter s, then the probability that X takes the positive integer value k is given by the probability mass function

where ζ(s) is the Riemann zeta function (which is undefined for s = 1).

The multiplicities of distinct prime factors of X are independent random variables.

The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta distribution" are often used interchangeably. But while the Zeta distribution is a probability distribution by itself, it is not associated to the Zipf's law with same exponent.

Definition

The Zeta distribution is defined for positive integers , and its probability mass function is given by

where is the parameter, and is the Riemann zeta function.

The cumulative distribution function is given by

where is the generalized harmonic number

Moments

The nth raw moment is defined as the expected value of Xn:

The series on the right is just a series representation of the Riemann zeta function, but it only converges for values of that are greater than unity. Thus:

The ratio of the zeta functions is well-defined, even for n > s − 1 because the series representation of the zeta function can be analytically continued. This does not change the fact that the moments are specified by the series itself, and are therefore undefined for large n.

Moment generating function

The moment generating function is defined as

The series is just the definition of the polylogarithm, valid for so that

Since this does not converge on an open interval containing , the moment generating function does not exist.

The case s = 1

ζ(1) is infinite as the harmonic series, and so the case when s = 1 is not meaningful. However, if A is any set of positive integers that has a density, i.e. if

exists where N(An) is the number of members of A less than or equal to n, then

is equal to that density.

The latter limit can also exist in some cases in which A does not have a density. For example, if A is the set of all positive integers whose first digit is d, then A has no density, but nonetheless the second limit given above exists and is proportional to

which is Benford's law.

Infinite divisibility

The Zeta distribution can be constructed with a sequence of independent random variables with a geometric distribution. Let be a prime number and be a random variable with a geometric distribution of parameter , namely

If the random variables are independent, then, the random variable defined by

has the zeta distribution: .

Stated differently, the random variable is infinitely divisible with Lévy measure given by the following sum of Dirac masses:

See also

Other "power-law" distributions

  • Gut, Allan. "Some remarks on the Riemann zeta distribution". CiteSeerX 10.1.1.66.3284. What Gut calls the "Riemann zeta distribution" is actually the probability distribution of −log X, where X is a random variable with what this article calls the zeta distribution.
  • Weisstein, Eric W. "Zipf Distribution". MathWorld.

Read other articles:

Universidad Autónoma del Perú Sigla UALema Pasión por tu futuroTipo Universidad privadaFundación 15 de diciembre de 2007 (15 años)Fundador Juan Cardoso RomeroLocalizaciónDirección Panamericana Sur, Km 16.3, Villa. 15842 Villa el Salvador, PeruLima, Perú PerúCampus 81,000 m²AdministraciónRector Enrqiue Vásquez HuamánVicerrector Rosa Larrea SerquenAcademiaEstudiantes 12,000 aprox.Colores académicos       Naranja oscuro       B...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) تيم ويكفيلد (بالإنجليزية: Tim Wakefield)‏  معلومات شخصية اسم الولادة (بالإنجليزية: Timothy Stephen Wakefield)‏  الميلاد 2 أغسطس 1966  ملبورن، فلوريدا  الوفاة 1 أكتوبر 2...

 

Опис файлу Опис Постер до фільму «Загадай бажання» Джерело Wish Upon a Star.jpg (англ. вікі) Час створення 1996 Автор зображення Авторські права належать дистриб'ютору, видавцю фільму або художнику цього постера. Ліцензія див. нижче Обґрунтування добропорядного використання для&...

  لالتسلسل اليومي للحرب، طالع التسلسل الزمني لحرب مرتفعات قرة باغ 2020. حرب مرتفعات قرة باغ 2020 جزء من نزاع مرتفعات قرة باغ والصراع بالوكالة بين روسيا وتركيا للحصول على خريطة أكثر تفصيلاً راجع الخريطة التفصيلية للنزاع في ناغورنو كاراباخ [الإنجليزية] معلومات عامة التاريخ...

 

  لمعانٍ أخرى، طالع هامبتون (توضيح). هامبتون   الإحداثيات 43°33′06″N 73°17′32″W / 43.551666666667°N 73.292222222222°W / 43.551666666667; -73.292222222222  تقسيم إداري  البلد الولايات المتحدة[1]  التقسيم الأعلى مقاطعة واشنغطون، نيويورك  خصائص جغرافية  المساحة 22.59 ميل مربع 

 

Facultad de Ciencias de la Universidad de Costa Rica Forma parte de Universidad de Costa RicaLocalizaciónDirección Montes de Oca, San José, Costa Rica, Coordenadas: 9°56′18.0″N 84°02′45.8″O / 9.938333, -84.046056Sitio web ciencias.ucr.ac.cr[editar datos en Wikidata] La Facultad de Ciencias es parte de la Universidad de Costa Rica (también llamada por sus siglas, UCR) es la universidad más grande, prestigiosa y antigua de la República de Costa Rica.[ci...

Sporting event delegationCongo-Kinshasa at the1968 Summer OlympicsFlag of Congo-KinshasaIOC codeCOD(COK used at these Games)NOCComité Olympique Congolaisin Mexico CityCompetitors5 in 1 sportMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances19681972–198019841988199219962000200420082012201620202024 Congo-Kinshasa competed at the 1968 Summer Olympics in Mexico City, Mexico. It was the first time that the nation was represented at the Olympic Games. Five competitors, all men, ...

 

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...

 

Form of marriage described in Hindu texts The Daiva marriage (Sanskrit: दैवविवाह, romanized: Daivavivāha)[1] is a righteous form of marriage. It is a form of marriage unique to the ancient Brahmins, where a man gifts his richly bedecked daughter's hand in marriage to a priest who officiates at the former's sacrifice ceremony, in lieu of paying the latter a nominal sacrificial fee. This form of a marriage, ranked as the second most meritorious, is regarded to rede...

  关于同名的越南最大島嶼,請見「富國島」。 澄清湖風景區富國島 富國島位於臺灣高雄市鳥松區,為澄清湖的一座人工內陸島,面積約100平方公尺,1955年11月予整建命名為富國島,以紀念中華民國國軍在越南的孤軍。[1] 島上景觀 富國島石碑 石碑:正面寫著「富國島」三字,背面寫著鄧文儀先生在民國49年所著的「大貝湖水月花容冠全台」,其內容大約在講...

 

Species of true bug Brochymena arborea Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hemiptera Suborder: Heteroptera Family: Pentatomidae Genus: Brochymena Species: B. arborea Binomial name Brochymena arborea(Say, 1825) Brochymena arborea is a species of stink bug in the family Pentatomidae. It is found in Central America and North America.[1][2][3] References ^ Brochymena arborea Report. Integrated Taxonomi...

 

アローディス・ビスカイーノArodys Vizcaínoカンザスシティ・ロイヤルズ (マイナー) アトランタ・ブレーブス時代(2018年9月30日)基本情報国籍 ドミニカ共和国出身地 サン・クリストバル州ヤグアテ(英語版)生年月日 (1990-11-13) 1990年11月13日(33歳)身長体重 6' 0 =約182.9 cm190 lb =約86.2 kg選手情報投球・打席 右投右打ポジション 投手プロ入り 2007年 アマチュアFA初出場 2011年...

Composition by Eric Satie Erik Satie Sonnerie pour réveiller le bon gros Roi des Singes (lequel ne dort toujours que d'un œil) (Fanfare for Waking Up the Big Fat King of the Monkeys [Who only Ever Sleeps with One Eye] ) is a fanfare for two trumpets in C composed in 1921 by Erik Satie. It was the last of his works to which he gave an outlandish title reminiscent of his humoristic vein. Eugene Goossens conducted the premiere at the Queen’s Hall in London on October 27, 1921.[1] A p...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Palmyra station – news · newspapers · books · scholar · JSTOR (July 2023) PalmyraNorthbound train arriving in February 2010General informationLocation10 East Broad StreetPalmyra, New JerseyCoordinates40°0′15″N 75°1′16″W / 40....

 

Mosaik abad ke-5 melukiskan Kristus mengusir setan, Basilika Sant'apollinare Nuovo, Ravenna, Italia. Yesus menyembuhkan orang-orang termasuk mengusir setan saat matahari telah terbenam atau pada malam hari dicatat dalam kitab-kitab Injil Sinoptik mengikuti peristiwa penyembuhan ibu mertua Simon Petrus, dalam Matius 8:16–17, Markus 1:32–34 dan Lukas 4:40–41.[1] Menurut kitab-kitab Injil, setelah Yesus menyembuhkan ibu mertua Petrus, ketika malam tiba, banyak orang yang kerasukan ...

Political movement The National Forum Aidgylara (Abkhaz: Аидгылара, Unity) is a socio-political movement in Abkhazia. It was founded during Perestroika as the ethno-nationalist movement representing the Abkhaz people. Aidgylara's founding congress took place on 13 December 1988 in the building of the Abkhazian State Philharmonic Orchestra, where the writer Alexey Gogua was elected its first Chairman.[1] On 18 March 1989, Aidgylara organised the mass gathering at the historica...

 

Tonnelle AvenueTonnelle Avenue station platformGeneral informationLocationTonnelle Avenue at 51st StreetNorth Bergen, New JerseyCoordinates40°47′14″N 74°01′52″W / 40.787327°N 74.03119°W / 40.787327; -74.03119Owned byNew Jersey TransitPlatforms1 island platformTracks2Connections NJ Transit Bus: 83, 127ConstructionParking682 spaces, 17 accessible spaces[1]Bicycle facilitiesYesAccessibleYesOther informationFare zone1HistoryOpenedFebruary 25, 2006 ...

 

Athletico Paranaense vs Corinthians Furacão versus Timão Arenas de Athletico e Corinthians. Informações gerais Athletico Paranaense 19 vitória(s), 87 gol(s) Corinthians 26 vitória(s), 95 gol(s) Empates 23 Total de jogos 68 Total de gols 182 Primeira partida Resultado Atlético Paranaense  1–0  Corinthians Competição Jogo amistoso Data 21 de julho de 1930 Local Arena da Baixada, Curitiba Última partida Resultado Athletico Paranaense  1-0  Corinthians Competi...

British television presenter This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Kate Gerbeau – news · newspapers · books · scholar · JSTOR (April 2011) (Learn how and when to remove this template m...

 

For other uses, see Paul Bunyan (disambiguation). Paul Bunyan State TrailA former Northern Pacific Railway depot in Nisswa, now a historical museum beside the Paul Bunyan State TrailLength112 mi (180 km)LocationCentral Minnesota, USADesignationMinnesota state trailTrailheadsCrow Wing State ParkLake Bemidji State ParkUseBiking, hiking, in-line skating, mountain biking, snowmobilingSeasonYear-roundSightsLeech Lake, Lake BemidjiHazardsSevere weatherSurfaceAsphaltWebsitePaul Bunyan Stat...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!