In mathematics , the Gauss–Kuzmin distribution is a discrete probability distribution that arises as the limit probability distribution of the coefficients in the continued fraction expansion of a random variable uniformly distributed in (0, 1).[ 4] The distribution is named after Carl Friedrich Gauss , who derived it around 1800,[ 5] and Rodion Kuzmin , who gave a bound on the rate of convergence in 1929.[ 6] [ 7] It is given by the probability mass function
p
(
k
)
=
− − -->
log
2
-->
(
1
− − -->
1
(
1
+
k
)
2
)
.
{\displaystyle p(k)=-\log _{2}\left(1-{\frac {1}{(1+k)^{2}}}\right)~.}
Gauss–Kuzmin theorem
Let
x
=
1
k
1
+
1
k
2
+
⋯ ⋯ -->
{\displaystyle x={\cfrac {1}{k_{1}+{\cfrac {1}{k_{2}+\cdots }}}}}
be the continued fraction expansion of a random number x uniformly distributed in (0, 1). Then
lim
n
→ → -->
∞ ∞ -->
P
{
k
n
=
k
}
=
− − -->
log
2
-->
(
1
− − -->
1
(
k
+
1
)
2
)
.
{\displaystyle \lim _{n\to \infty }\mathbb {P} \left\{k_{n}=k\right\}=-\log _{2}\left(1-{\frac {1}{(k+1)^{2}}}\right)~.}
Equivalently, let
x
n
=
1
k
n
+
1
+
1
k
n
+
2
+
⋯ ⋯ -->
;
{\displaystyle x_{n}={\cfrac {1}{k_{n+1}+{\cfrac {1}{k_{n+2}+\cdots }}}}~;}
then
Δ Δ -->
n
(
s
)
=
P
{
x
n
≤ ≤ -->
s
}
− − -->
log
2
-->
(
1
+
s
)
{\displaystyle \Delta _{n}(s)=\mathbb {P} \left\{x_{n}\leq s\right\}-\log _{2}(1+s)}
tends to zero as n tends to infinity.
Rate of convergence
In 1928, Kuzmin gave the bound
|
Δ Δ -->
n
(
s
)
|
≤ ≤ -->
C
exp
-->
(
− − -->
α α -->
n
)
.
{\displaystyle |\Delta _{n}(s)|\leq C\exp(-\alpha {\sqrt {n}})~.}
In 1929, Paul Lévy [ 8] improved it to
|
Δ Δ -->
n
(
s
)
|
≤ ≤ -->
C
0.7
n
.
{\displaystyle |\Delta _{n}(s)|\leq C\,0.7^{n}~.}
Later, Eduard Wirsing showed[ 9] that, for λ = 0.30366... (the Gauss–Kuzmin–Wirsing constant ), the limit
Ψ Ψ -->
(
s
)
=
lim
n
→ → -->
∞ ∞ -->
Δ Δ -->
n
(
s
)
(
− − -->
λ λ -->
)
n
{\displaystyle \Psi (s)=\lim _{n\to \infty }{\frac {\Delta _{n}(s)}{(-\lambda )^{n}}}}
exists for every s in [0, 1], and the function Ψ (s ) is analytic and satisfies Ψ (0) = Ψ (1) = 0. Further bounds were proved by K. I. Babenko .[ 10]
See also
References
^ Blachman, N. (1984). "The continued fraction as an information source (Corresp.)". IEEE Transactions on Information Theory . 30 (4): 671– 674. doi :10.1109/TIT.1984.1056924 .
^ Kornerup, Peter; Matula, David W. (July 1995). "LCF: A Lexicographic Binary Representation of the Rationals". J.UCS the Journal of Universal Computer Science . Vol. 1. pp. 484– 503. CiteSeerX 10.1.1.108.5117 . doi :10.1007/978-3-642-80350-5_41 . ISBN 978-3-642-80352-9 .
^ Vepstas, L. (2008), Entropy of Continued Fractions (Gauss-Kuzmin Entropy) (PDF)
^ Weisstein, Eric W. "Gauss–Kuzmin Distribution" . MathWorld .
^ Gauss, Johann Carl Friedrich . Werke Sammlung . Vol. 10/1. pp. 552– 556.
^ Kuzmin, R. O. (1928). "On a problem of Gauss". Dokl. Akad. Nauk SSSR : 375– 380.
^ Kuzmin, R. O. (1932). "On a problem of Gauss". Atti del Congresso Internazionale dei Matematici, Bologna . 6 : 83– 89.
^ Lévy, P. (1929). "Sur les lois de probabilité dont dépendant les quotients complets et incomplets d'une fraction continue" . Bulletin de la Société Mathématique de France . 57 : 178– 194. doi :10.24033/bsmf.1150 . JFM 55.0916.02 .
^ Wirsing, E. (1974). "On the theorem of Gauss–Kusmin–Lévy and a Frobenius-type theorem for function spaces" . Acta Arithmetica . 24 (5): 507– 528. doi :10.4064/aa-24-5-507-528 .
^ Babenko, K. I. (1978). "On a problem of Gauss". Soviet Math. Dokl . 19 : 136– 140.
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families