Share to: share facebook share twitter share wa share telegram print page

Atmospheric chemistry

Atmospheric chemistry is a branch of atmospheric science in which the chemistry of the Earth's atmosphere and that of other planets is studied.[1] It is a multidisciplinary approach of research and draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology and other disciplines. Research is increasingly connected with other areas of study such as climatology.

The composition and chemistry of the Earth's atmosphere is of importance for several reasons, but primarily because of the interactions between the atmosphere and living organisms. The composition of the Earth's atmosphere changes as result of natural processes such as volcano emissions, lightning and bombardment by solar particles from corona. It has also been changed by human activity and some of these changes are harmful to human health, crops and ecosystems. Examples of problems which have been addressed by atmospheric chemistry include acid rain, ozone depletion, photochemical smog, greenhouse gases and global warming. Atmospheric chemists seek to understand the causes of these problems, and by obtaining a theoretical understanding of them, allow possible solutions to be tested and the effects of changes in government policy evaluated.

Atmospheric composition

Visualisation of composition by volume of Earth's atmosphere. Water vapour is not included as it is highly variable. Each tiny cube (such as the one representing krypton) has one millionth of the volume of the entire block. Data is from NASA Langley.
The composition of common nitrogen oxides in dry air vs. temperature
Chemical composition of atmosphere according to altitude.[2] Axis: Altitude (km), Content of volume (%).
Average composition of dry atmosphere (mole fractions)
Gas Dry air per NASA Dry clean air near sea level
(standard ISO 2533 - 1975)
Nitrogen, N2 78.084% 78.084%
Oxygen, O2[3] 20.946% 20.946%
Minor constituents (mole fractions in ppm)
Argon, Ar 9340 9340
Carbon dioxide*[a], CO2 430 430
Neon, Ne 18.18 18.18
Helium, He 5.24 5.24
Methane[a], CH4 1.9 1.9
Krypton, Kr 1.14 1.14
Hydrogen, H2 0.53 0.53
Nitrous oxide, N2O 0.34
Xenon, Xe 0.087
Nitrogen dioxide, NO2 up to 0.02
Ozone*, O3, in summer up to 0.07
Ozone*, O3, in winter up to 0.02
Sulphur dioxide*, SO2 up to 1
Iodine*, I2 0.01
Water
Water vapour* Highly variable (about 0–3%);
typically makes up about 1%
Notes
The mean molecular mass of dry air is 28.97 g/mol. *The content of the gas may undergo significant variations from time to time or from place to place. [a]The concentration of CO2 and CH4 vary by season and location.

Trace gas composition

Besides the more major components listed above, Earth's atmosphere also has many trace gas species that vary significantly depending on nearby sources and sinks. These trace gases can include compounds such as CFCs/HCFCs which are particularly damaging to the ozone layer, and H
2
S
which has a characteristic foul odor of rotten eggs and can be smelt in concentrations as low as 0.47 ppb. Some approximate amounts near the surface of some additional gases are listed below. In addition to gases, the atmosphere contains particulates as aerosol, which includes for example droplets, ice crystals, bacteria, and dust.

Composition (ppt by volume unless otherwise stated)
Gas Clean continental, Seinfeld & Pandis (2016)[4] Simpson et al. (2010)[5]
Carbon monoxide, CO 40-200 ppb p39 97 ppb
Nitric oxide, NO 16
Ethane, C2H6 781
Propane, C3H8 200
Isoprene, C5H8 311
Benzene, C6H6 11
Methanol, CH3OH 1967
Ethanol, C2H5OH 75
Trichlorofluoromethane, CCl3F 237 p41 252.7
Dichlorodifluoromethane, CCl2F2 530 p41 532.3
Chloromethane, CH3Cl 503
Bromomethane, CH3Br 9–10 p44 7.7
Iodomethane, CH3I 0.36
Carbonyl sulfide, OCS 510 p26 413
Sulfur dioxide, SO2 70–200 p26 102
Hydrogen sulfide, H2S 15–340 p26
Carbon disulfide, CS2 15–45 p26
Formaldehyde, H2CO 9.1 ppb p37, polluted
Acetylene, C2H2 8.6 ppb p37, polluted
Ethene, C2H4 11.2 ppb p37, polluted 20
Sulfur hexafluoride, SF6 7.3 p41
Carbon tetrafluoride, CF4 79 p41
Total gaseous mercury, Hg 0.209 p55

History

Schematic of chemical and transport processes related to atmospheric composition

The first scientific studies of atmospheric composition began in the 18th century, as chemists such as Joseph Priestley, Antoine Lavoisier and Henry Cavendish made the first measurements of the composition of the atmosphere.[citation needed]

In the late 19th and early 20th centuries interest shifted towards trace constituents with very small concentrations. One particularly important discovery for atmospheric chemistry was the discovery of ozone by Christian Friedrich Schönbein in 1840.[6]

In the 20th century atmospheric science moved on from studying the composition of air to a consideration of how the concentrations of trace gases in the atmosphere have changed over time and the chemical processes which create and destroy compounds in the air. Two particularly important examples of this were the explanation by Sydney Chapman and Gordon Dobson of how the ozone layer is created and maintained, and the explanation of photochemical smog by Arie Jan Haagen-Smit. Further studies on ozone issues led to the 1995 Nobel Prize in Chemistry award shared between Paul Crutzen, Mario Molina and Frank Sherwood Rowland.[7]

In the 21st century the focus is now shifting again. Atmospheric chemistry is increasingly studied as one part of the Earth system. Instead of concentrating on atmospheric chemistry in isolation the focus is now on seeing it as one part of a single system with the rest of the atmosphere, biosphere and geosphere. An especially important driver for this is the links between chemistry and climate such as the effects of changing climate on the recovery of the ozone hole and vice versa but also interaction of the composition of the atmosphere with the oceans and terrestrial ecosystems.[citation needed]

Carbon dioxide in Earth's atmosphere if half of anthropogenic CO2 emissions[8][9] are not absorbed
(NASA simulation; 9 November 2015)
Nitrogen dioxide 2014 - global air quality levels
(released 14 December 2015)[10]

Methodology

Observations, lab measurements, and modeling are the three central elements in atmospheric chemistry. Progress in atmospheric chemistry is often driven by the interactions between these components and they form an integrated whole. For example, observations may tell us that more of a chemical compound exists than previously thought possible. This will stimulate new modelling and laboratory studies which will increase our scientific understanding to a point where the observations can be explained.[citation needed]

Observation

Observations of atmospheric chemistry are essential to our understanding. Routine observations of chemical composition tell us about changes in atmospheric composition over time. One important example of this is the Keeling Curve - a series of measurements from 1958 to today which show a steady rise in of the concentration of carbon dioxide (see also ongoing measurements of atmospheric CO2). Observations of atmospheric chemistry are made in observatories such as that on Mauna Loa and on mobile platforms such as aircraft (e.g. the UK's Facility for Airborne Atmospheric Measurements), ships and balloons. Observations of atmospheric composition are increasingly made by satellites with important instruments such as GOME and MOPITT giving a global picture of air pollution and chemistry. Surface observations have the advantage that they provide long term records at high time resolution but are limited in the vertical and horizontal space they provide observations from. Some surface based instruments e.g. LIDAR can provide concentration profiles of chemical compounds and aerosol but are still restricted in the horizontal region they can cover. Many observations are available on line in Atmospheric Chemistry Observational Databases.[citation needed]

Laboratory studies

Measurements made in the laboratory are essential to understanding the sources and sinks of pollutants and naturally occurring compounds. These experiments are performed in controlled environments that allow for the individual evaluation of specific chemical reactions or the assessment of properties of a particular atmospheric constituent.[11] Types of analysis that are of interest includes both those on gas-phase reactions, as well as heterogeneous reactions that are relevant to the formation and growth of aerosols. Also of high importance is the study of atmospheric photochemistry which quantifies how the rate in which molecules are split apart by sunlight and what resulting products are. In addition, thermodynamic data such as Henry's law coefficients can also be obtained.[citation needed]

Modeling

In order to synthesize and test theoretical understanding of atmospheric chemistry, computer models (such as chemical transport models) are used. Numerical models solve the differential equations governing the concentrations of chemicals in the atmosphere. They can be very simple or very complicated. One common trade off in numerical models is between the number of chemical compounds and chemical reactions modeled versus the representation of transport and mixing in the atmosphere. For example, a box model might include hundreds or even thousands of chemical reactions but will only have a very crude representation of mixing in the atmosphere. In contrast, 3D models represent many of the physical processes of the atmosphere but due to constraints on computer resources will have far fewer chemical reactions and compounds. Models can be used to interpret observations, test understanding of chemical reactions and predict future concentrations of chemical compounds in the atmosphere. These models can be global (simulating the entire earth) or they can be regional (focused on only a specific region). The trade-off between the two approaches is their resolution as well as the amount of detail they can provide; global models usually have lower horizontal resolution and represent less complex chemical mechanisms but they simulate a larger area, while regional models do not simulate the entire globe but focus on one area with higher resolution and more detail. One important current trend is for atmospheric chemistry modules to become one part of earth system models in which the links between climate, atmospheric composition and the biosphere can be studied. These types of models allow the coupling of different compartments of the earth, such as the atmosphere, the biosphere and the hydrosphere; allowing the users to analyze the complicated interactions between them.

Some models are constructed by automatic code generators (e.g. Autochem or Kinetic PreProcessor). In this approach a set of constituents are chosen and the automatic code generator will then select the reactions involving those constituents from a set of reaction databases. Once the reactions have been chosen the ordinary differential equations that describe their time evolution can be automatically constructed.

See also

References

  1. ^ "Atmospheric chemistry - Latest research and news | Nature". www.nature.com. Retrieved 2022-10-06.
  2. ^ Cairns, Iver (23 September 1999). "Earth's Atmosphere". The University of Sydney. Retrieved 7 April 2021.
  3. ^ Zimmer, Carl (3 October 2013). "Earth's Oxygen: A Mystery Easy to Take for Granted". The New York Times. Retrieved 3 October 2013.
  4. ^ Seinfeld, John; Pandis, Spyros (2016). Atmospheric Chemistry and Physics - from Air Pollution to Climate Change, 3rd ed. Hoboken, New Jersey: Wiley. ISBN 9781119221173.
  5. ^ Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R. (2010). "Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NO, O3 and SO2". Atmospheric Chemistry and Physics. 10 (23): 11931–11954. Bibcode:2010ACP....1011931S. doi:10.5194/acp-10-11931-2010. ISSN 1680-7324. S2CID 62782723.
  6. ^ Shoenbein, C. (1843-01-01). On the Production of Ozone by Chemical Means. Royal Society of London.
  7. ^ "Press Release - 1995 Nobel Prize in Chemistry". The Nobel Prize. Nobel Prize Org. October 11, 1995.
  8. ^ St. Fleur, Nicholas (10 November 2015). "Atmospheric Greenhouse Gas Levels Hit Record, Report Says". The New York Times. Retrieved 11 November 2015.
  9. ^ Ritter, Karl (9 November 2015). "UK: In 1st, global temps average could be 1 degree C higher". AP News. Retrieved 11 November 2015.
  10. ^ Cole, Steve; Gray, Ellen (14 December 2015). "New NASA Satellite Maps Show Human Fingerprint on Global Air Quality". NASA. Retrieved 14 December 2015.
  11. ^ National Academies of Sciences, Engineering, and Medicine (2016). Future of Atmospheric Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow. Washington, DC: The National Academies Press. p. 15. ISBN 978-0-309-44565-8.

Further reading

  • Brasseur, Guy P.; Orlando, John J.; Tyndall, Geoffrey S. (1999). Atmospheric Chemistry and Global Change. Oxford University Press. ISBN 0-19-510521-4.
  • Finlayson-Pitts, Barbara J.; Pitts, James N., Jr. (2000). Chemistry of the Upper and Lower Atmosphere. Academic Press. ISBN 0-12-257060-X.
  • Seinfeld, John H.; Pandis, Spyros N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2nd Ed.). John Wiley and Sons, Inc. ISBN 0-471-82857-2.
  • Warneck, Peter (2000). Chemistry of the Natural Atmosphere (2nd Ed.). Academic Press. ISBN 0-12-735632-0.
  • Wayne, Richard P. (2000). Chemistry of Atmospheres (3rd Ed.). Oxford University Press. ISBN 0-19-850375-X.
  • J. V. Iribarne, H. R. Cho, Atmospheric Physics, D. Reidel Publishing Company, 1980

Read other articles:

José Joaquín de Nava y Cabezudo Gobernador de la Provincia de Costa Rica 3 de abril de 1764-14 de junio de 1773Predecesor José de Oreamuno y VázquezSucesor Juan Fernández de Bobadilla Información personalNacimiento Ciudad Rodrigo (España) Fallecimiento 10 de abril de 1784 Nacionalidad CostarricenseInformación profesionalOcupación Político [editar datos en Wikidata] José Joaquín de Nava y Cabezudo, (n. Pamplona, Navarra - m. Granada, Nicaragua, 10 de abril de 1784) fue un...

Duke of Bracciano Virginio OrsiniVirginio Orsini by unknown Florentine painterDuke of BraccianoReign1585–1615PredecessorPaolo Giordano I OrsiniSuccessorPaolo Giordano II OrsiniBorn(1572-09-00)September 1572Died9 September 1615(1615-09-09) (aged 42–43)RomeSpouse Flavia Peretti ​ ​(m. 1589; died 1606)​IssueAmong othersPaolo Giordano II OrsiniAlessandro OrsiniMaria Felicia OrsiniHouseOrsiniFatherPaolo Giordano I OrsiniMotherIsabella de' Me...

Agustinus Dedy PrasetyoKomandan Korem 045/Garuda JayaPetahanaMulai menjabat 29 Maret 2023PendahuluUjang Darwis Informasi pribadiLahir25 Agustus 1970 (umur 53)IndonesiaAlma materAkademi Militer (1994)PekerjaanTentaraKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1994—sekarangPangkat Brigadir Jenderal TNISatuanInfanteri (Kopassus)Sunting kotak info • L • B Brigadir Jenderal TNI Agustinus Dedy Prasetyo, S.I.P. (lahir 25 Agustus 1970) adal...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) كدي 2الشعارمعلومات عامةنوع بيئة سطح المكتب نظام التشغيل شبيه يونكس النموذج المصدري حقوق التأليف والنشر مح...

Опис файлу Опис Обкладинка синглу Baby It's Over Єлени Папарізу Джерело http://en.wikipedia.org/wiki/File:Helena_Paparizou-Baby_It's_Over.jpg Час створення 2011 Автор зображення Sony Greece/RCA Ліцензія див. нижче Обґрунтування добропорядного використання не вказано назву статті [?] Опис Обкладинка синглу Baby It's ...

Citroën C4 CactusInformasiProdusenCitroënMasa produksi2014–sekarangPerakitanSpanyol: Villaverde (Madrid)Bodi & rangkaKelasSubcompact crossover SUVBentuk kerangka5-pintu SUVTata letakFront-engine, front-wheel-drivePlatformPSA PF1 platformMobil terkaitCitroën C3DS 3Peugeot 208Opel Crossland XPenyalur dayaMesin1.2 L PSA EB2 Puretech I3 (bensin) 1.6 L HDi 16V I4 (diesel)DimensiJarak sumbu roda2.595 mm (102,2 in)Panjang4.157 mm (163,7 in)Lebar1.729 mm (68,1&#...

Gore Park is a town square or urban park located in downtown Hamilton, Ontario. Gore ParkGore Park and its fountain in downtown HamiltonTypeUrban parkLocation1 Hughson Street South,Hamilton, Ontario,CanadaCoordinates43°15′22″N 79°52′06″W / 43.2561611°N 79.8683481°W / 43.2561611; -79.8683481Created1850 (1850)Owned byCity of HamiltonPublic transit accessHSR 1 King, 2 Barton, 3 Cannon, 5 Delaware, 10 B Line Express, 51 University SpecialWebsitehttps:...

Sebuah palet batu yang menggambarkan altar pemujaan api (kemungkinan terkait zoroastrianisme) Pemujaan api atau pendewaan api (juga disebut pirodulia, pirolatri, atau pirolatria) dikenal dalam berbagai agama dan kepercayaan. Api telah menjadi bagian penting dari budaya manusia sejak era Paleolitikum Bawah. Jejak pengendalian api paling awal yang diketahui ditemukan di Jembatan Putri Jacob, Israel, dan berasal dari 790.000 tahun yang lalu.[1] Gagasan agama atau animisme yang terkait de...

Highway in California For the former highway signed as Route 70, see U.S. Route 70 (California). State Route 70SR 70 highlighted in redRoute informationMaintained by CaltransLength178.528 mi[1] (287.313 km)(plus about 0.5 mi (1 km) on SR 20)HistoryState highway in 1910 and 1931; became SR 24 in 1934, US 40A in 1954, and SR 70 in 1964Touristroutes Feather River Scenic BywayMajor junctionsSouthwest end SR 99 near Pleasant GroveMajor intersections SR 20...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2017) ترتيب الدول الكبرى على المستوى الرياضي هو دراسة تجرى &#...

The square in 2012 Navoi Square (Uzbek: Navoiy maydoni) is an area in the city centre of Andijan, Uzbekistan. It was originally named Bobur Square, after Babur, the founder of the Mughal dynasty. On 13 May 2005, it was the site of the Andijan Massacre.[1] References ^ How the Andijan killings unfolded. BBC News. 17 May 2005. Retrieved 10 June 2011. This Uzbekistan-related article is a stub. You can help Wikipedia by expanding it.vte

Keuskupan Piacenza-BobbioDioecesis Placentina-BobiensisKatolik LokasiNegaraItaliaProvinsi gerejawiModena-NonantolaStatistikLuas3.716 km2 (1.435 sq mi)Populasi- Total- Katolik(per 2016)337.632325,250 (perkiraan) (96.4%)Paroki420Imam218 (diosesan)7 (Ordo Relijius)42 Deakon PermanenInformasiDenominasiGereja KatolikRitusRitus RomaPendirianAbad ke-4KatedralBasilica Cattedrale di S. Giustina e S. Maria Assunta (Piacenza)KonkatedralConcattedrale dell’Assunzione d...

Жінка без головиLa mujer sin cabeza Жанр драмаРежисер Лукресія МартельПродюсер Педро АльмодоварАгустін АльмодоварТільде КорсіВероніка КураЕстер ГарсіяЛукресія МартельЧезаре ПетріллоЕнріке ПіньєйроВієрі РаццініМаріанна СлотСценарист Лукресія МартельУ головних ролях Марі...

Unia Europejska Ten artykuł jest częścią serii o: Relacjach zewnętrznychUnii Europejskiej Polityka zewnętrzna Unii Europejskiej Wspólna polityka zagraniczna i bezpieczeństwa Rada Europejska Przewodniczący Rady Europejskiej Rada Unii Europejskiej ds. ogólnych i stosunków zewnętrznych Wysoki przedstawiciel Europejska Służba Działań Zewnętrznych Inne działania zewnętrzne Unii Europejskiej Komisarz ds. współpracy międzynarodowej, pomocy humanitarnej i reagowania kryzysowego ...

Ricardo Cabanas Informasi pribadiNama lengkap Ricardo Cabanas-ReyTanggal lahir 17 Januari 1979 (umur 44)Tempat lahir Zürich, SwissTinggi 1,73 m (5 ft 8 in)Posisi bermain GelandangInformasi klubKlub saat ini Grasshopper Club ZürichNomor 15Karier junior1986–1992 SCI Juventus Zürich1992–1997 Grasshopper Club ZürichKarier senior*Tahun Tim Tampil (Gol)1997–2006 Grasshopper Club Zürich 198 (42)2003–2004 → Guingamp (pinjaman) 17 (0)2006–2007 1. FC Köln 41 (2)200...

Stadion AkademiMiniCOMS, MinihadNama lengkapStadion Akademi Manchester CityLokasiManchester, InggrisKoordinat53°28′52″N 2°11′34″W / 53.48111°N 2.19278°W / 53.48111; -2.19278Koordinat: 53°28′52″N 2°11′34″W / 53.48111°N 2.19278°W / 53.48111; -2.19278PemilikManchester City F.C.OperatorManchester City F.C.Kapasitas7.000[1]PermukaanRumputKonstruksiDibuka8 Desember 2014Biaya£200 juta (total nilai untuk fasilitas latiha...

|1 = European Union?Iraq= |2 = European Union= |3 = Iraq= Ірак і Європейський Союз Європейський Союз Ірак Відносини Іраку та Європейського Союзу — це міжнародні відносини між Республікою Ірак і Європейським Союзом. Відносини були напруженими з початку 1990-х років, але зараз вони поступово прогре...

American gang member and murder victim Robert (Yummy) SandiferMugshot of SandiferBorn(1983-04-17)April 17, 1983Chicago, Illinois, U.S.DiedSeptember 1, 1994(1994-09-01) (aged 11)Chicago, Illinois, U.S.Cause of deathGunshot woundsOther namesYummyOccupation(s)Street gang member(Black Disciples)Criminal statusDeceasedCriminal chargeArson, armed robbery, drug possessionPenaltyProbation Robert Sandifer (April 17, 1983 – September 1, 1994) (also known as Yummy) was an 11-year-old bo...

Research institute located in Garching, Germany Max Planck Institute for Astrophysics 2016 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Max Planck Institute for Astrophysics – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this template message) The Max Planck In...

Genus of flowering plants Distylium Distylium racemosum in Japan Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Order: Saxifragales Family: Hamamelidaceae Subfamily: Hamamelidoideae Tribe: Fothergilleae Genus: DistyliumSiebold & Zucc. Species See text Distylium (winter-hazel) is a genus of about 18 species of evergreen shrubs and trees in the witch hazel family, Hamamelidaceae, native to eastern and southeastern Asia. Taxonomy Fossil rec...

Kembali kehalaman sebelumnya