Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes. The largest reservoir of methane is under the seafloor in the form of methane clathrates. When methane reaches the surface and the atmosphere, it is known as atmospheric methane.[10]
The Earth's atmospheric methane concentration has increased by about 160% since 1750, with the overwhelming percentage caused by human activity.[11] It accounted for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases, according to the 2021 Intergovernmental Panel on Climate Change report.[12] Strong, rapid and sustained reductions in methane emissions could limit near-term warming and improve air quality by reducing global surface ozone.[13]
Methane has also been detected on other planets, including Mars, which has implications for astrobiology research.[14]
Properties and bonding
Methane is a tetrahedral molecule with four equivalent C–H bonds. Its electronic structure is described by four bonding molecular orbitals (MOs) resulting from the overlap of the valence orbitals on C and H. The lowest-energy MO is the result of the overlap of the 2s orbital on carbon with the in-phase combination of the 1s orbitals on the four hydrogen atoms. Above this energy level is a triply degenerate set of MOs that involve overlap of the 2p orbitals on carbon with various linear combinations of the 1s orbitals on hydrogen. The resulting "three-over-one" bonding scheme is consistent with photoelectron spectroscopic measurements.
Methane is an odorless, colourless and transparent gas at standard temperature and pressure.[15] It does absorb visible light, especially at the red end of the spectrum, due to overtone bands, but the effect is only noticeable if the light path is very long. This is what gives Uranus and Neptune their blue or bluish-green colors, as light passes through their atmospheres containing methane and is then scattered back out.[16]
The familiar smell of natural gas as used in homes is achieved by the addition of an odorant, usually blends containing tert-butylthiol, as a safety measure. Methane has a boiling point of −161.5 °C at a pressure of one atmosphere.[3] As a gas, it is flammable over a range of concentrations (5.4%–17%) in air at standard pressure.
Solid methane exists in several modifications. Presently nine are known.[17] Cooling methane at normal pressure results in the formation of methane I. This substance crystallizes in the cubic system (space group Fm3m). The positions of the hydrogen atoms are not fixed in methane I, i.e. methane molecules may rotate freely. Therefore, it is a plastic crystal.[18]
Partial oxidation of methane to methanol (CH3OH), a more convenient, liquid fuel, is challenging because the reaction typically progresses all the way to carbon dioxide and water even with an insufficient supply of oxygen. The enzymemethane monooxygenase produces methanol from methane, but cannot be used for industrial-scale reactions.[19] Some homogeneously catalyzed systems and heterogeneous systems have been developed, but all have significant drawbacks. These generally operate by generating protected products which are shielded from overoxidation. Examples include the Catalytica system, copper zeolites, and iron zeolites stabilizing the alpha-oxygen active site.[20]
A variety of positive ions derived from methane have been observed, mostly as unstable species in low-pressure gas mixtures. These include methenium or methyl cation CH+3, methane cation CH+4, and methanium or protonated methane CH+5. Some of these have been detected in outer space. Methanium can also be produced as diluted solutions from methane with superacids. Cations with higher charge, such as CH2+6 and CH3+7, have been studied theoretically and conjectured to be stable.[23]
Peters four-step chemistry is a systematically reduced four-step chemistry that explains the burning of methane.
Methane radical reactions
Given appropriate conditions, methane reacts with halogenradicals as follows:
•X + CH4 → HX + •CH3
•CH3 + X2 → CH3X + •X
where X is a halogen: fluorine (F), chlorine (Cl), bromine (Br), or iodine (I). This mechanism for this process is called free radical halogenation. It is initiated when UV light or some other radical initiator (like peroxides) produces a halogen atom. A two-step chain reaction ensues in which the halogen atom abstracts a hydrogen atom from a methane molecule, resulting in the formation of a hydrogen halide molecule and a methyl radical (•CH3). The methyl radical then reacts with a molecule of the halogen to form a molecule of the halomethane, with a new halogen atom as byproduct.[26] Similar reactions can occur on the halogenated product, leading to replacement of additional hydrogen atoms by halogen atoms with dihalomethane, trihalomethane, and ultimately, tetrahalomethane structures, depending upon reaction conditions and the halogen-to-methane ratio.
Methane may be transported as a refrigerated liquid (liquefied natural gas, or LNG). While leaks from a refrigerated liquid container are initially heavier than air due to the increased density of the cold gas, the gas at ambient temperature is lighter than air. Gas pipelines distribute large amounts of natural gas, of which methane is the principal component.
Fuel
Methane is used as a fuel for ovens, homes, water heaters, kilns, automobiles,[27][28] turbines, etc.
As the major constituent of natural gas, methane is important for electricity generation by burning it as a fuel in a gas turbine or steam generator. Compared to other hydrocarbon fuels, methane produces less carbon dioxide for each unit of heat released. At about 891 kJ/mol, methane's heat of combustion is lower than that of any other hydrocarbon, but the ratio of the heat of combustion (891 kJ/mol) to the molecular mass (16.0 g/mol, of which 12.0 g/mol is carbon) shows that methane, being the simplest hydrocarbon, produces more heat per mass unit (55.7 kJ/g) than other complex hydrocarbons. In many areas with a dense enough population, methane is piped into homes and businesses for heating, cooking, and industrial uses. In this context it is usually known as natural gas, which is considered to have an energy content of 39 megajoules per cubic meter, or 1,000 BTU per standard cubic foot. Liquefied natural gas (LNG) is predominantly methane (CH4) converted into liquid form for ease of storage or transport.
Rocket propellant
Refined liquid methane as well as LNG is used as a rocket fuel,[29] when combined with liquid oxygen, as in the TQ-12, BE-4, Raptor, and YF-215 engines.[30] Due to the similarities between methane and LNG such engines are commonly grouped together under the term methalox.
As a liquid rocket propellant, a methane/liquid oxygen combination offers the advantage over kerosene/liquid oxygen combination, or kerolox, of producing small exhaust molecules, reducing coking or deposition of soot on engine components. Methane is easier to store than hydrogen due to its higher boiling point and density, as well as its lack of hydrogen embrittlement.[31][32] The lower molecular weight of the exhaust also increases the fraction of the heat energy which is in the form of kinetic energy available for propulsion, increasing the specific impulse of the rocket. Compared to liquid hydrogen, the specific energy of methane is lower but this disadvantage is offset by methane's greater density and temperature range, allowing for smaller and lighter tankage for a given fuel mass. Liquid methane has a temperature range (91–112 K) nearly compatible with liquid oxygen (54–90 K). The fuel currently sees use in operational launch vehicles such as Zhuque-2 and Vulcan as well as in-development launchers such as Starship, Neutron, and Terran R.[33]
Chemical feedstock
Natural gas, which is mostly composed of methane, is used to produce hydrogen gas on an industrial scale. Steam methane reforming (SMR), or simply known as steam reforming, is the standard industrial method of producing commercial bulk hydrogen gas. More than 50 million metric tons are produced annually worldwide (2013), principally from the SMR of natural gas.[34] Much of this hydrogen is used in petroleumrefineries, in the production of chemicals and in food processing. Very large quantities of hydrogen are used in the industrial synthesis of ammonia.
At high temperatures (700–1100 °C) and in the presence of a metal-based catalyst (nickel), steam reacts with methane to yield a mixture of CO and H2, known as "water gas" or "syngas":
CH4 + H2O ⇌ CO + 3 H2
This reaction is strongly endothermic (consumes heat, ΔHr = 206 kJ/mol).
Additional hydrogen is obtained by the reaction of CO with water via the water-gas shift reaction:
CO + H2O ⇌ CO2 + H2
This reaction is mildly exothermic (produces heat, ΔHr = −41 kJ/mol).
Methane is also subjected to free-radical chlorination in the production of chloromethanes, although methanol is a more typical precursor.[35]
Hydrogen can also be produced via the direct decomposition of methane, also known as methane pyrolysis, which, unlike steam reforming, produces no greenhouse gases (GHG). The heat needed for the reaction can also be GHG emission free, e.g. from concentrated sunlight, renewable electricity, or burning some of the produced hydrogen. If the methane is from biogas then the process can be a carbon sink. Temperatures in excess of 1200 °C are required to break the bonds of methane to produce hydrogen gas and solid carbon.[36]
However, through the use of a suitable catalyst the reaction temperature can be reduced to between 550-900 °C depending on the chosen catalyst. Dozens of catalysts have been tested, including unsupported and supported metal catalysts, carbonaceous and metal-carbon catalysts.[37]
The reaction is moderately endothermic as shown in the reaction equation below.[38]
The two main routes for geological methane generation are (i) organic (thermally generated, or thermogenic) and (ii) inorganic (abiotic).[14] Thermogenic methane occurs due to the breakup of organic matter at elevated temperatures and pressures in deep sedimentary strata. Most methane in sedimentary basins is thermogenic; therefore, thermogenic methane is the most important source of natural gas. Thermogenic methane components are typically considered to be relic (from an earlier time). Generally, formation of thermogenic methane (at depth) can occur through organic matter breakup, or organic synthesis. Both ways can involve microorganisms (methanogenesis), but may also occur inorganically. The processes involved can also consume methane, with and without microorganisms.
The more important source of methane at depth (crystalline bedrock) is abiotic. Abiotic means that methane is created from inorganic compounds, without biological activity, either through magmatic processes[example needed] or via water-rock reactions that occur at low temperatures and pressures, like serpentinization.[39][40]
Most of Earth's methane is biogenic and is produced by methanogenesis,[41][42] a form of anaerobic respiration only known to be conducted by some members of the domain Archaea.[43] Methanogens occur in landfills and soils,[44]ruminants (for example, cattle),[45] the guts of termites, and the anoxic sediments below the seafloor and the bottom of lakes.
This multistep process is used by these microorganisms for energy. The net reaction of methanogenesis is:
Wetlands are the largest natural sources of methane to the atmosphere,[47] accounting for approximately 20 - 30% of atmospheric methane.[48] Climate change is increasing the amount of methane released from wetlands due to increased temperatures and altered rainfall patterns. This phenomenon is called wetland methane feedback.[49]
Rice cultivation generates as much as 12% of total global methane emissions due to the long-term flooding of rice fields.[50]
Ruminants
Ruminants, such as cattle, belch methane, accounting for about 22% of the U.S. annual methane emissions to the atmosphere.[51] One study reported that the livestock sector in general (primarily cattle, chickens, and pigs) produces 37% of all human-induced methane.[52] A 2013 study estimated that livestock accounted for 44% of human-induced methane and about 15% of human-induced greenhouse gas emissions.[53] Many efforts are underway to reduce livestock methane production, such as medical treatments and dietary adjustments,[54][55] and to trap the gas to use its combustion energy.[56]
Seafloor sediments
Most of the subseafloor is anoxic because oxygen is removed by aerobic microorganisms within the first few centimeters of the sediment. Below the oxygen-replete seafloor, methanogens produce methane that is either used by other organisms or becomes trapped in gas hydrates.[43] These other organisms that utilize methane for energy are known as methanotrophs ('methane-eating'), and are the main reason why little methane generated at depth reaches the sea surface.[43] Consortia of Archaea and Bacteria have been found to oxidize methane via anaerobic oxidation of methane (AOM); the organisms responsible for this are anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB).[57]
Industrial routes
Given its cheap abundance in natural gas, there is little incentive to produce methane industrially. Methane can be produced by hydrogenating carbon dioxide through the Sabatier process. Methane is also a side product of the hydrogenation of carbon monoxide in the Fischer–Tropsch process, which is practiced on a large scale to produce longer-chain molecules than methane.
An example of large-scale coal-to-methane gasification is the Great Plains Synfuels plant, started in 1984 in Beulah, North Dakota as a way to develop abundant local resources of low-grade lignite, a resource that is otherwise difficult to transport for its weight, ash content, low calorific value and propensity to spontaneous combustion during storage and transport. A number of similar plants exist around the world, although mostly these plants are targeted towards the production of long chain alkanes for use as gasoline, diesel, or feedstock to other processes.
Methane is the major component of natural gas, about 87% by volume. The major source of methane is extraction from geological deposits known as natural gas fields, with coal seam gas extraction becoming a major source (see coal bed methane extraction, a method for extracting methane from a coal deposit, while enhanced coal bed methane recovery is a method of recovering methane from non-mineable coal seams). It is associated with other hydrocarbon fuels, and sometimes accompanied by helium and nitrogen. Methane is produced at shallow levels (low pressure) by anaerobicdecay of organic matter and reworked methane from deep under the Earth's surface. In general, the sediments that generate natural gas are buried deeper and at higher temperatures than those that contain oil.
Methane is generally transported in bulk by pipeline in its natural gas form, or by LNG carriers in its liquefied form; few countries transport it by truck.
Methane is an important greenhouse gas, responsible for around 30% of the rise in global temperatures since the industrial revolution.[58]
Methane has a global warming potential (GWP) of 29.8 ± 11 compared to CO2 (potential of 1) over a 100-year period, and 82.5 ± 25.8 over a 20-year period.[59] This means that, for example, a leak of one tonne of methane is equivalent to emitting 82.5 tonnes of carbon dioxide. Burning methane and producing carbon dioxide also reduces the greenhouse gas impact compared to simply venting methane to the atmosphere.
As methane is gradually converted into carbon dioxide (and water) in the atmosphere, these values include the climate forcing from the carbon dioxide produced from methane over these timescales.
Annual global methane emissions are currently approximately 580 Mt,[60] 40% of which is from natural sources and the remaining 60% originating from human activity, known as anthropogenic emissions. The largest anthropogenic source is agriculture, responsible for around one quarter of emissions, closely followed by the energy sector, which includes emissions from coal, oil, natural gas and biofuels.[61]
Historic methane concentrations in the world's atmosphere have ranged between 300 and 400 nmol/mol during glacial periods commonly known as ice ages, and between 600 and 700 nmol/mol during the warm interglacial periods. A 2012 NASA website said the oceans were a potential important source of Arctic methane,[62] but more recent studies associate increasing methane levels as caused by human activity.[11]
Global monitoring of atmospheric methane concentrations began in the 1980s.[11] The Earth's atmospheric methane concentration has increased 160% since preindustrial levels in the mid-18th century.[11] In 2013, atmospheric methane accounted for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases.[63] Between 2011 and 2019 the annual average increase of methane in the atmosphere was 1866 ppb.[12] From 2015 to 2019 sharp rises in levels of atmospheric methane were recorded.[64][65]
In 2019, the atmospheric methane concentration was higher than at any time in the last 800,000 years. As stated in the AR6 of the IPCC, "Since 1750, increases in CO2 (47%) and CH4 (156%) concentrations far exceed, and increases in N2O (23%) are similar to, the natural multi-millennial changes between glacial and interglacial periods over at least the past 800,000 years (very high confidence)".[12][a][66]
In February 2020, it was reported that fugitive emissions and gas venting from the fossil fuel industry may have been significantly underestimated.[67][68] The largest annual increase occurred in 2021 with the overwhelming percentage caused by human activity.[11]
Climate change can increase atmospheric methane levels by increasing methane production in natural ecosystems, forming a climate change feedback.[43][69] Another explanation for the rise in methane emissions could be a slowdown of the chemical reaction that removes methane from the atmosphere.[70]
Over 100 countries have signed the Global Methane Pledge, launched in 2021, promising to cut their methane emissions by 30% by 2030.[71] This could avoid 0.2˚C of warming globally by 2050, although there have been calls for higher commitments in order to reach this target.[72] The International Energy Agency's 2022 report states "the most cost-effective opportunities for methane abatement are in the energy sector, especially in oil and gas operations".[73]
Clathrates
Methane clathrates (also known as methane hydrates) are solid cages of water molecules that trap single molecules of methane. Significant reservoirs of methane clathrates have been found in arctic permafrost and along continental margins beneath the ocean floor within the gas clathrate stability zone, located at high pressures (1 to 100 MPa; lower end requires lower temperature) and low temperatures (< 15 °C; upper end requires higher pressure).[74] Methane clathrates can form from biogenic methane, thermogenic methane, or a mix of the two. These deposits are both a potential source of methane fuel as well as a potential contributor to global warming.[75][76] The global mass of carbon stored in gas clathrates is still uncertain and has been estimated as high as 12,500 Gt carbon and as low as 500 Gt carbon.[49] The estimate has declined over time with a most recent estimate of ≈1800 Gt carbon.[77] A large part of this uncertainty is due to our knowledge gap in sources and sinks of methane and the distribution of methane clathrates at the global scale. For example, a source of methane was discovered relatively recently in an ultraslow spreading ridge in the Arctic.[48] Some climate models suggest that today's methane emission regime from the ocean floor is potentially similar to that during the period of the Paleocene–Eocene Thermal Maximum (PETM) around 55.5 million years ago, although there are no data indicating that methane from clathrate dissociation currently reaches the atmosphere.[77]Arctic methane release from permafrost and seafloor methane clathrates is a potential consequence and further cause of global warming; this is known as the clathrate gun hypothesis.[78][79][80][81] Data from 2016 indicate that Arctic permafrost thaws faster than predicted.[82]
Public safety and the environment
Methane "degrades air quality and adversely impacts human health, agricultural yields, and ecosystem productivity".[83]
In May 2023 The Guardian published a report blaming Turkmenistan as the worst in the world for methane super emitting. The data collected by Kayrros researchers indicate that two large Turkmen fossil fuel fields leaked 2.6 million and 1.8 million metric tonnes of methane in 2022 alone, pumping the CO2 equivalent of 366 million tonnes into the atmosphere, surpassing the annual CO2 emissions of the United Kingdom.[92]
Methane is also an asphyxiant if the oxygen concentration is reduced to below about 16% by displacement, as most people can tolerate a reduction from 21% to 16% without ill effects. The concentration of methane at which asphyxiation risk becomes significant is much higher than the 5–15% concentration in a flammable or explosive mixture. Methane off-gas can penetrate the interiors of buildings near landfills and expose occupants to significant levels of methane. Some buildings have specially engineered recovery systems below their basements to actively capture this gas and vent it away from the building.[citation needed]
This section is missing information about where extraterrestrial abiotic methane comes from (Big Bang? supernova? mineral deposits reacting?). Please expand the section to include this information. Further details may exist on the talk page.(June 2024)
Methane is abundant in many parts of the Solar System and potentially could be harvested on the surface of another Solar System body (in particular, using methane production from local materials found on Mars[93] or Titan), providing fuel for a return journey.[29][94]
Mars
Methane has been detected on all planets of the Solar System and most of the larger moons.[citation needed] With the possible exception of Mars, it is believed to have come from abiotic processes.[95][96]
Methane could be produced by a non-biological process called serpentinization[b] involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars.[106]
Titan
Methane has been detected in vast abundance on Titan, the largest moon of Saturn. It comprises a significant portion of its atmosphere and also exists in a liquid form on its surface, where it comprises the majority of the liquid in Titan's vast lakes of hydrocarbons, the second largest of which is believed to be almost pure methane in composition.[107]
The presence of stable lakes of liquid methane on Titan, as well as the surface of Titan being highly chemically active and rich in organic compounds, has led scientists to consider the possibility of life existing within Titan's lakes, using methane as a solvent in the place of water for Earth-based life[108] and using hydrogen in the atmosphere to derive energy with acetylene, in much the same way that Earth-based life uses glucose.[109]
History
The discovery of methane is credited to Italian physicist Alessandro Volta, who characterized numerous properties including its flammability limit and origin from decaying organic matter.[110]
Volta was initially motivated by reports of inflammable air present in marshes by his friend Father Carlo Guiseppe Campi. While on a fishing trip to Lake Maggiore straddling Italy and Switzerland in November 1776, he noticed the presence of bubbles in the nearby marshes and decided to investigate. Volta collected the gas rising from the marsh and demonstrated that the gas was inflammable.[110][111]
Volta notes similar observations of inflammable air were present previously in scientific literature, including a letter written by Benjamin Franklin.[112]
Etymologically, the word methane is coined from the chemical suffix "-ane", which denotes substances belonging to the alkane family; and the word methyl, which is derived from the German Methyl (1840) or directly from the French méthyle, which is a back-formation from the French méthylène (corresponding to English "methylene"), the root of which was coined by Jean-Baptiste Dumas and Eugène Péligot in 1834 from the Greek μέθυmethy (wine) (related to English "mead") and ὕληhyle (meaning "wood"). The radical is named after this because it was first detected in methanol, an alcohol first isolated by distillation of wood. The chemical suffix -ane is from the coordinating chemical suffix -ine which is from Latin feminine suffix -ina which is applied to represent abstracts. The coordination of "-ane", "-ene", "-one", etc. was proposed in 1866 by German chemist August Wilhelm von Hofmann.[116]
Abbreviations
The abbreviation CH4-C can mean the mass of carbon contained in a mass of methane, and the mass of methane is always 1.33 times the mass of CH4-C.[117][118]CH4-C can also mean the methane-carbon ratio, which is 1.33 by mass.[119] Methane at scales of the atmosphere is commonly measured in teragrams (Tg CH4) or millions of metric tons (MMT CH4), which mean the same thing.[120] Other standard units are also used, such as nanomole (nmol, one billionth of a mole), mole (mol), kilogram, and gram.
Methyl group, a functional group related to methane.
Explanatory notes
^In 2013 Intergovernmental Panel on Climate Change (IPCC) scientists warned atmospheric concentrations of methane had "exceeded the pre-industrial levels by about 150% which represented "levels unprecedented in at least the last 800,000 years."
^There are many serpentinization reactions. Olivine is a solid solution between forsterite and fayalite whose general formula is (Fe,Mg)2SiO4. The reaction producing methane from olivine can be written as: Forsterite + Fayalite + Water + Carbonic acid → Serpentine + Magnetite + Methane , or (in balanced form):
^ ab"General Principles, Rules, and Conventions". Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. P-12.1. doi:10.1039/9781849733069-00001. ISBN978-0-85404-182-4. Methane is a retained name (see P-12.3) that is preferred to the systematic name 'carbane', a name never recommended to replace methane, but used to derive the names 'carbene' and 'carbyne' for the radicals H2C2• and HC3•, respectively.
^ abcdeGlobal Methane Assessment(PDF). United Nations Environment Programme and Climate and Clean Air Coalition (Report). Nairobi. 2022. p. 12. Retrieved March 15, 2023.
^IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, page 26, section C.2.3
^Wendelin Himmelheber. "Crystal structures". Archived from the original on February 12, 2020. Retrieved December 10, 2019.
^Baik, Mu-Hyun; Newcomb, Martin; Friesner, Richard A.; Lippard, Stephen J. (2003). "Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase". Chemical Reviews. 103 (6): 2385–419. doi:10.1021/cr950244f. PMID12797835.
^
Reimann, Joachim; Jetten, Mike S.M.; Keltjens, Jan T. (2015). "Metal Enzymes in "Impossible" Microorganisms Catalyzing the Anaerobic Oxidation of Ammonium and Methane". In Peter M.H. Kroneck and Martha E. Sosa Torres (ed.). Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences. Vol. 15. Springer. pp. 257–313. doi:10.1007/978-3-319-12415-5_7. ISBN978-3-319-12414-8. PMID25707470.
^Bordwell, Frederick G. (1988). "Equilibrium acidities in dimethyl sulfoxide solution". Accounts of Chemical Research. 21 (12): 456–463. doi:10.1021/ar00156a004. S2CID26624076.
^Rasul, G.; Surya Prakash, G.K.; Olah, G.A. (2011). "Comparative study of the hypercoordinate carbonium ions and their boron analogs: A challenge for spectroscopists". Chemical Physics Letters. 517 (1): 1–8. Bibcode:2011CPL...517....1R. doi:10.1016/j.cplett.2011.10.020.
^Cornell, Clayton B. (April 29, 2008). "Natural Gas Cars: CNG Fuel Almost Free in Some Parts of the Country". Archived from the original on January 20, 2019. Retrieved July 25, 2009. Compressed natural gas is touted as the 'cleanest burning' alternative fuel available, since the simplicity of the methane molecule reduces tailpipe emissions of different pollutants by 35 to 97%. Not quite as dramatic is the reduction in net greenhouse-gas emissions, which is about the same as corn-grain ethanol at about a 20% reduction over gasoline
^"Blue Origin BE-4 Engine". Archived from the original on October 1, 2021. Retrieved June 14, 2019. We chose LNG because it is highly efficient, low cost and widely available. Unlike kerosene, LNG can be used to self-pressurize its tank. Known as autogenous repressurization, this eliminates the need for costly and complex systems that draw on Earth's scarce helium reserves. LNG also possesses clean combustion characteristics even at low throttle, simplifying engine reuse compared to kerosene fuels.
^Rossberg, M. et al. (2006) "Chlorinated Hydrocarbons" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_233.pub2.
^Thiel, Volker (2018), "Methane Carbon Cycling in the Past: Insights from Hydrocarbon and Lipid Biomarkers", in Wilkes, Heinz (ed.), Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate, Handbook of Hydrocarbon and Lipid Microbiology, Springer International Publishing, pp. 1–30, doi:10.1007/978-3-319-54529-5_6-1, ISBN9783319545295, S2CID105761461
^ abBoswell, Ray; Collett, Timothy S. (2011). "Current perspectives on gas hydrate resources". Energy Environ. Sci. 4 (4): 1206–1215. doi:10.1039/c0ee00203h.
^Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A. & Tempio, G. (2013). "Tackling Climate Change Through Livestock". Rome: Food and Agriculture Organization of the United Nations (FAO). Archived from the original on July 19, 2016. Retrieved July 15, 2016.
^Knittel, K.; Wegener, G.; Boetius, A. (2019), McGenity, Terry J. (ed.), "Anaerobic Methane Oxidizers", Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology, Handbook of Hydrocarbon and Lipid Microbiology, Springer International Publishing, pp. 1–21, doi:10.1007/978-3-319-60063-5_7-1, ISBN9783319600635
^Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; Wild, M.; Zhang, H. (2021). "The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity". Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, US: Cambridge University Press. pp. 923–1054.
^IPCC (2013). Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; et al. (eds.). Climate Change 2013: The Physical Science Basis(PDF) (Report). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
^Shindell, Drew; Kuylenstierna, Johan C. I.; Vignati, Elisabetta; van Dingenen, Rita; Amann, Markus; Klimont, Zbigniew; Anenberg, Susan C.; Muller, Nicholas; Janssens-Maenhout, Greet; Raes, Frank; Schwartz, Joel; Faluvegi, Greg; Pozzoli, Luca; Kupiainen, Kaarle; Höglund-Isaksson, Lena; Emberson, Lisa; Streets, David; Ramanathan, V.; Hicks, Kevin; Oanh, N. T. Kim; Milly, George; Williams, Martin; Demkine, Volodymyr; Fowler, David (January 13, 2012). "Simultaneously mitigating near-term climate change and improving human health and food security". Science. 335 (6065): 183–189. Bibcode:2012Sci...335..183S. doi:10.1126/science.1210026. ISSN1095-9203. PMID22246768. S2CID14113328.
^Dozolme, Philippe. "Common Mining Accidents". About.com Money. About.com. Archived from the original on November 11, 2012. Retrieved November 7, 2012.
^ abZubrin, R. M.; Muscatello, A. C.; Berggren, M. (2013). "Integrated Mars in Situ Propellant Production System". Journal of Aerospace Engineering. 26: 43–56. doi:10.1061/(ASCE)AS.1943-5525.0000201.
^"Methane Blast". NASA. May 4, 2007. Archived from the original on November 16, 2019. Retrieved July 7, 2012.
Lunsford, Jack H. (2000). "Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century". Catalysis Today. 63 (2–4): 165–174. doi:10.1016/S0920-5861(00)00456-9.
Russian pair skater Tatiana DanilovaDanilova and Kamianchuk in 2017Native nameТатьяна Сергеевна ДаниловаBorn (1993-11-25) 25 November 1993 (age 30)Moscow, RussiaHeight1.54 m (5 ft 1⁄2 in)Figure skating careerCountryBelarusPartnerMikalai KamianchukCoachDmitri KaplunSkating clubSDUSHOR MinskBegan skating2000 Tatiana Sergeyevna Danilova (Russian: Татьяна Сергеевна Данилова; born 25 November 1993) is a Russian pair skater. ...
Larocoلاروكو (بالإسبانية: Larouco)[1] لاروكو موقع لاروكو في منطقة غاليسيا (إسبانيا) تقسيم إداري البلد إسبانيا[2] المنطقة غاليسيا المسؤولون المقاطعة أورينسي خصائص جغرافية إحداثيات 42°20′48″N 7°09′48″W / 42.3466038°N 7.1632358°W / 42.3466038; -7.1632358[3] [4] المس...
Якуруто ЯкурутоТип НапійПоходження Японська кухняАвтор Мінору Шірота (англ. Minoru Shirota)Час появи 1930Необхідні компоненти молоко, кукурудзяний сироп з високим вмістом фруктози, сахароза, цитрусовий ароматизатор, Lactobacillus paracaseiСхожі страви Йогурт Медіафайли у Вікісховищі...
Peter Hofmann (2011) Peter Maria Hofmann (* 18. Juli 1958 in Hildesheim) ist ein deutscher katholischer Theologe und Hochschullehrer. Inhaltsverzeichnis 1 Biographie 2 Forschungsschwerpunkte 3 Profil 4 Mitgliedschaften 5 Schriften 6 Weblinks 7 Einzelnachweise Biographie Nach dem Studium der katholischen Theologie an der Hochschule Sankt Georgen wurde er 1987 bei Jörg Splett mit einer Dissertation über das Thema „Glaubensbegründung“ promoviert. Nach der Priesterweihe im selben Jahr durc...
Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. Pandemi koronavirus di Selandia BaruPeta Kasus terkonfirmasi oleh dewan kesehatan distrikPeta wabah di Selandia Baru oleh dewan kesehatan distrikPeta Kematian di Selandia menurut dewan kesehatan distrikPenyakitCOVID-19Galur virusSARS-CoV-2LokasiSelandia BaruKasus pertamaAuckland, AucklandTanggal kemunculan28 Februari 2020(3 tahun dan 9 bulan)Kasus terkonfirmasi1....
Hạ Long Bay A cable car station located in Sapa, Fansipan: the highest mountain in the Indochinese Peninsula The Golden Bridge at Bana Hills The Hang Sơn Đoòng is the largest known cave passage in the world by volume. It is so large it contains its own subterranean forest and ecosystem. The Gate leading to the Marble Mountains, a popular tourist destination Ban Gioc Falls Giant Waterfalls located in Northern Vietnam Bái Đính Temple, a popular site for Buddhist pilgrimages from across ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Classical music of the United States – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this template message) The Lincoln Center houses nationally and internationally renowned performing arts organizations including the New...
Peta lokasi Munisipalitas Helsingør Munisipalitas Helsingør adalah sebuah kawasan pemukiman (Denmark: kommune) di Region Hovedstaden di Denmark. Munisipalitas Helsingør memiliki luas sebesar 122 km² dan memiliki populasi sebesar 60.844 jiwa. Referensi Municipal statistics: NetBorger Kommunefakta Diarsipkan 2007-08-12 di Wayback Machine., delivered from KMD aka Kommunedata (Municipal Data) Municipal merges and neighbors: Eniro new municipalities map Diarsipkan 2007-10-11 di Wayback Ma...
Iron Age hillfort in Wiltshire, England Castle RingsDitch and rampart of Castle RingsLocation within WiltshireGeneral informationArchitectural styleIron Age hill fortTown or cityDonhead St MaryCountryEnglandCoordinates51°01′30″N 2°09′38″W / 51.025046°N 2.160424°W / 51.025046; -2.160424Technical detailsSize12.8 acres (5.2 ha) Castle Rings is a univallate hill fort in the parish of Donhead St Mary in Wiltshire, England.[1] The site is a Scheduled...
Constituency of the Jharkhand legislative assembly in India SilliConstituency No. 61 for the Jharkhand Legislative AssemblyConstituency detailsCountryIndiaRegionEast IndiaStateJharkhandDistrictRanchiLS constituencyRanchiTotal electors205,955Member of Legislative Assembly5th Jharkhand Legislative AssemblyIncumbent Sudhesh Kumar Mahto Elected year2019 Silli Assembly constituency is an assembly constituency in the Indian state of Jharkhand.[1] Members of the Legislative Assembly Year Nam...
2016 shooter video game 2016 video gameTHOTHDeveloper(s)Jeppe CarlsenPublisher(s)Double Fine ProductionsEngineUnityPlatform(s)Microsoft Windows, macOS, SwitchReleaseWindows, macOSWW: October 7, 2016SwitchWW: October 10, 2020Genre(s)Multi-directional shooterMode(s)Single-player, multiplayer Thoth (stylised as THOTH) is an abstract shoot 'em up video game created by Jeppe Carlsen, former lead gameplay designer of Playdead games Limbo and Inside.[1][2] It is published by Double F...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (نوفمبر 2020) الجامعة التونسية للريشة الطائرة الاسم المختصر FTBAD الريا...
Alfonso d'AragonaTondo di Alfonso d'Aragona nella Plaza MayorViceré d'AragonaIn carica1517 –1520 Predecessorecarica creata SuccessoreGiovanni di Lanuza Nome completoAlfonso di Trastamara Altri titoliViceré di Catalogna NascitaCervera, 10 marzo 1470 MorteLécera, 24 febbraio 1520 (49 anni) Casa realeTrastámara PadreFerdinando II d'Aragona MadreAldonza Ruiz de Iborre i Alemany ConsorteAnna di Gurrea FigliGiovannaMartinoGiovanniAntonioAnnaFernando eAlfonso, illegittimi Alfon...
Platform used to raise something above its surroundings For other uses, see Podium (disambiguation). Podia redirects here. For a taxonomic synonym of a genus of plants, see Centaurea. A podium at the 2010 Winter Olympics. The medallists of the ladies' single figure skating: Mao Asada (left, silver), Yuna Kim (center, gold), Joannie Rochette (right, bronze).An orchestra conductor stands on a podium so he can both see and be seen by the musicians A podium (pl.: podiums or podia) is a platform u...
Stadion Gelora Soeprijadi Informasi stadionNama lengkapStadion Gelora SoeprijadiPemilikPemerintah Kota BlitarLokasiLokasi Blitar, Jawa Timur, IndonesiaDirenovasi2007DitutupMasih digunakanData teknisPermukaanRumputKapasitas15.000 orangPemakaiPSBI BLITARSunting kotak info • L • BBantuan penggunaan templat ini Stadion Gelora Soeprijadi (Jawa: ꦱ꧀ꦠꦢꦶꦪꦺꦴꦤ꧀ꦒꦼꦭꦺꦴꦫꦱꦺꦴꦮꦼꦥꦿꦶꦗꦢꦶ) adalah sebuah stadion yang terletak di Blitar, J...
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!