A landfill[a] is a site for the disposal of waste materials. It is the oldest and most common form of waste disposal, although the systematic burial of waste with daily, intermediate and final covers only began in the 1940s. In the past, waste was simply left in piles or thrown into pits (known in archeology as middens).
Landfills take up a lot of land and pose environmental risks. Some landfill sites are used for waste management purposes, such as temporary storage, consolidation and transfer, or for various stages of processing waste material, such as sorting, treatment, or recycling. Unless they are stabilized, landfills may undergo severe shaking or soil liquefaction of the ground during an earthquake. Once full, the area over a landfill site may be reclaimed for other uses.
Operations
Operators of well-run landfills for non-hazardous waste meet predefined specifications by applying techniques to:[1]
They can also cover waste (usually daily) with layers of soil or other types of material such as woodchips and fine particles.
During landfill operations, a scale or weighbridge may weigh waste collection vehicles on arrival and personnel may inspect loads for wastes that do not accord with the landfill's waste-acceptance criteria.[2] Afterward, the waste collection vehicles use the existing road network on their way to the tipping face or working front, where they unload their contents. After loads are deposited, compactors or bulldozers can spread and compact the waste on the working face. Before leaving the landfill boundaries, the waste collection vehicles may pass through a wheel-cleaning facility. If necessary, they return to the weighbridge for re-weighing without their load. The weighing process can assemble statistics on the daily incoming waste tonnage, which databases can retain for record keeping. In addition to trucks, some landfills may have equipment to handle railroad containers. The use of "rail-haul" permits landfills to be located at more remote sites, without the problems associated with many truck trips.
Typically, in the working face, the compacted waste is covered with soil or alternative materials daily. Alternative waste-cover materials include chipped wood or other "green waste",[3] several sprayed-on foam products, chemically "fixed" bio-solids, and temporary blankets. Blankets can be lifted into place at night and then removed the following day prior to waste placement. The space that is occupied daily by the compacted waste and the cover material is called a daily cell. Waste compaction is critical to extending the life of the landfill. Factors such as waste compressibility, waste-layer thickness and the number of passes of the compactor over the waste affect the waste densities.
Sanitary landfill life cycle
The term landfill is usually shorthand for a municipal landfill or sanitary landfill. These facilities were first introduced early in the 20th century, but gained wide use in the 1960s and 1970s, in an effort to eliminate open dumps and other "unsanitary" waste disposal practices. The sanitary landfill is an engineered facility that separates and confines waste. Sanitary landfills are intended as biological reactors (bioreactors) in which microbes will break down complex organic waste into simpler, less toxic compounds over time. These reactors must be designed and operated according to regulatory standards and guidelines (See environmental engineering).
Usually, aerobic decomposition is the first stage by which wastes are broken down in a landfill. These are followed by four stages of anaerobic degradation. Usually, solid organic material in solid phase decays rapidly as larger organic molecules degrade into smaller molecules. These smaller organic molecules begin to dissolve and move to the liquid phase, followed by hydrolysis of these organic molecules, and the hydrolyzed compounds then undergo transformation and volatilization as carbon dioxide (CO2) and methane (CH4), with rest of the waste remaining in solid and liquid phases.
During the early phases, little material volume reaches the leachate, as the biodegradable organic matter of the waste undergoes a rapid decrease in volume. Meanwhile, the leachate's chemical oxygen demand increases with increasing concentrations of the more recalcitrant compounds compared to the more reactive compounds in the leachate. Successful conversion and stabilization of the waste depend on how well microbial populations function in syntrophy, i.e. an interaction of different populations to provide each other's nutritional needs.:[4]
The life cycle of a municipal landfill undergoes five distinct phases:[5][4]
Initial adjustment (Phase I)
As the waste is placed in the landfill, the void spaces contain high volumes of molecular oxygen (O2). With added and compacted wastes, the O2 content of the landfill bioreactor strata gradually decreases. Microbial populations grow, density increases. Aerobic biodegradation dominates, i.e. the primary electron acceptor is O2.
Transition (Phase II)
The O2 is rapidly degraded by the existing microbial populations. The decreasing O2 leads to less aerobic and more anaerobic conditions in the layers. The primary electron acceptors during transition are nitrates and sulphates since O2 is rapidly displaced by CO2 in the effluent gas.
Acid formation (Phase III)
Hydrolysis of the biodegradable fraction of the solid waste begins in the acid formation phase, which leads to rapid accumulation of volatile fatty acids (VFAs) in the leachate. The increased organic acid content decreases the leachate pH from approximately 7.5 to 5.6. During this phase, the decomposition intermediate compounds like the VFAs contribute much chemical oxygen demand (COD). Long-chain volatile organic acids (VOAs) are converted to acetic acid (C2H4O2), CO2, and hydrogen gas (H2). High concentrations of VFAs increase both the biochemical oxygen demand (BOD) and VOA concentrations, which initiates H2 production by fermentative bacteria, which stimulates the growth of H2-oxidizing bacteria. The H2 generation phase is relatively short because it is complete by the end of the acid formation phase. The increase in the biomass of acidogenic bacteria increases the amount of degradation of the waste material and consuming nutrients. Metals, which are generally more water-soluble at lower pH, may become more mobile during this phase, leading to increasing metal concentrations in the leachate.
Methane fermentation (Phase IV)
The acid formation phase intermediary products (e.g., acetic, propionic, and butyric acids) are converted to CH4 and CO2 by methanogenic microorganisms. As VFAs are metabolized by the methanogens, the landfill water pH returns to neutrality. The leachate's organic strength, expressed as oxygen demand, decreases at a rapid rate with increases in CH4 and CO2 gas production. This is the longest decomposition phase.
Final maturation and stabilization (Phase V)
The rate of microbiological activity slows during the last phase of waste decomposition as the supply of nutrients limits the chemical reactions, e.g. as bioavailable phosphorus becomes increasingly scarce. CH4 production almost completely disappears, with O2 and oxidized species gradually reappearing in the gas wells as O2 permeates downwardly from the troposphere. This transforms the oxidation–reduction potential (ORP) in the leachate toward oxidative processes. The residual organic materials may incrementally be converted to the gas phase, and as organic matter is composted; i.e. the organic matter is converted to humic-like compounds.[6]
Social and environmental impact
Landfills have the potential to cause a number of issues. Infrastructure disruption, such as damage to access roads by heavy vehicles, may occur. Pollution of local roads and watercourses from wheels on vehicles when they leave the landfill can be significant and can be mitigated by wheel washing systems. Pollution of the local environment, such as contamination of groundwater or aquifers or soil contamination may occur, as well.
When precipitation falls on open landfills, water percolates through the garbage and becomes contaminated with suspended and dissolved material, forming leachate. If this is not contained it can contaminate groundwater. All modern landfill sites use a combination of impermeable liners several metres thick, geologically stable sites and collection systems to contain and capture this leachate. It can then be treated and evaporated. Once a landfill site is full, it is sealed off to prevent precipitation ingress and new leachate formation. However, liners must have a lifespan, be it several hundred years or more. Eventually, any landfill liner could leak,[7] so the ground around landfills must be tested for leachate to prevent pollutants from contaminating groundwater.
Rotting food and other decaying organic waste create decomposition gases, especially CO2 and CH4 from aerobic and anaerobic decomposition, respectively. Both processes occur simultaneously in different parts of a landfill. In addition to available O2, the fraction of gas constituents will vary, depending on the age of landfill, type of waste, moisture content and other factors. For example, the maximum amount of landfill gas produced can be illustrated a simplified net reaction of diethyl oxalate that accounts for these simultaneous reactions:[8]
4 C6H10O4 + 6 H2O → 13 CH4 + 11 CO2
On average, about half of the volumetric concentration of landfill gas is CH4 and slightly less than half is CO2. The gas also contains about 5% molecular nitrogen (N2), less than 1% hydrogen sulfide (H2S), and a low concentration of non-methane organic compounds (NMOC), about 2700 ppmv.[8]
Landfill gases can seep out of the landfill and into the surrounding air and soil. Methane is a greenhouse gas, and is flammable and potentially explosive at certain concentrations, which makes it perfect for burning to generate electricity cleanly. Since decomposing plant matter and food waste only release carbon that has been captured from the atmosphere through photosynthesis, no new carbon enters the carbon cycle and the atmospheric concentration of CO2 is not affected. Carbon dioxide traps heat in the atmosphere, contributing to climate change.[9] In properly managed landfills, gas is collected and flared or recovered for landfill gas utilization.
Vectors
Poorly run landfills may become nuisances because of vectors such as rats and flies which can spread infectious diseases. The occurrence of such vectors can be mitigated through the use of daily cover.
Other nuisances
Other potential issues include wildlife disruption due to occupation of habitat[10] and animal health disruption caused by consuming waste from landfills,[11] dust, odor, noise pollution, and reduced local property values.
Gases are produced in landfills due to the anaerobic digestion by microbes. In a properly managed landfill, this gas is collected and used. Its uses range from simple flaring to the landfill gas utilization and generation of electricity. Landfill gas monitoring alerts workers to the presence of a build-up of gases to a harmful level. In some countries, landfill gas recovery is extensive; in the United States, for example, more than 850 landfills have active landfill gas recovery systems.[12]
Landfills in Canada are regulated by provincial environmental agencies and environmental protection legislation.[14]
Older facilities tend to fall under current standards and are monitored for leaching.[15] Some former locations have been converted to parkland.
European Union
In the European Union, individual states are obliged to enact legislation to comply with the requirements and obligations of the European Landfill Directive.
The majority of EU member states have laws banning or severely restricting the disposal of household trash via landfills.[16]
India
Landfilling is currently the major method of municipal waste disposal in India. India also has Asia's largest dumping ground in Deonar, Mumbai.[17] However, issues frequently arise due to the alarming growth rate of landfills and poor management by authorities.[18] On and under surface fires have been commonly seen in the Indian landfills over the last few years.[17]
Landfilling practices in the UK have had to change in recent years to meet the challenges of the European Landfill Directive. The UK now imposes landfill tax upon biodegradable waste which is put into landfills. In addition to this the Landfill Allowance Trading Scheme has been established for local authorities to trade landfill quotas in England. A different system operates in Wales where authorities cannot 'trade' amongst themselves, but have allowances known as the Landfill Allowance Scheme.
U.S. landfills are regulated by each state's environmental agency, which establishes minimum guidelines; however, none of these standards may fall below those set by the United States Environmental Protection Agency (EPA).[19]
Permitting a landfill generally takes between five and seven years, costs millions of dollars and requires rigorous siting, engineering and environmental studies and demonstrations to ensure local environmental and safety concerns are satisfied.[20]
Types
Municipal solid waste: takes in household waste and nonhazardous material. Included in this type of landfill is a Bioreactor Landfill that specifically degrades organic material.
Industrial waste: for commercial and industrial waste. Other related landfills include Construction and Demolition Debris Landfills and Coal Combustion Residual Landfills.
One can treat landfills as a viable and abundant source of materials and energy. In the developing world, waste pickers often scavenge for still-usable materials. In commercial contexts, companies have also discovered landfill sites, and many[quantify] have begun harvesting materials and energy.[25] Well-known examples include gas-recovery facilities.[26]
Other commercial facilities include waste incinerators which have built-in material recovery. This material recovery is possible through the use of filters (electro filter, active-carbon and potassium filter, quench, HCl-washer, SO2-washer, bottom ash-grating, etc.).
^ abLetcher, T.M.; Vallero, D.A., eds. (2019). Municipal Landfill, D. Vallero and G. Blight, pp. 235–249 in Waste: A Handbook for Management. Amsterdam, Netherlands and Boston MA, Print Book: Elsevier Academic Press. ISBN9780128150603. 804 pages.
^Weitz, Keith; Barlaz, Morton; Ranjithan, Ranji; Brill, Downey; Thorneloe, Susan; Ham, Robert (July 1999). "Life Cycle Management of Municipal Solid Waste". The International Journal of Life Cycle Assessment. 4 (4): 195–201. Bibcode:1999IJLCA...4..195W. doi:10.1007/BF02979496. ISSN0948-3349. S2CID108698198.
^US EPA, "Solid Waste Disposal Facility Criteria; Proposed Rule", Federal Register 53(168):33314–33422, 40 CFR Parts 257 and 258, US EPA, Washington, D.C., August 30 (1988a).
^ abThemelis, Nickolas J., and Priscilla A. Ulloa. "Methane generation in landfills." Renewable Energy 32.7 (2007), 1243–1257
^Gomez, A.M.; Yannarell, A.C.; Sims, G.K.; Cadavid-Resterpoa, G.; Herrera, C.X.M. (2011). "Characterization of bacterial diversity at different depths in the Moravia Hill Landfill site at Medellín, Colombia". Soil Biology and Biochemistry. 43 (6): 1275–1284. Bibcode:2011SBiBi..43.1275G. doi:10.1016/j.soilbio.2011.02.018.
H. Lanier Hickman Jr. and Richard W. Eldredge. "Part 3: The Sanitary Landfill". A Brief History of Solid Waste Management in the US During the Last 50 Years. Archived from the original on November 23, 2005. Retrieved August 29, 2005.
Daniel A. Vallero, Environmental Biotechnology: A Biosystems Approach. 2nd Edition. Academic Press, Amsterdam, Netherlands and Boston MA, Print Book ISBN9780124077768; eBook ISBN9780124078970. 2015.
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...
لمعانٍ أخرى، طالع رون إليس (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) رون إليس معلومات شخصية الميلاد 8 يناير 1945 (78 سنة) مواطنة كندا الطول 175 سنتيمتر الوزن 195 رطل الحياة العملية
У Вікіпедії є статті про інших людей із прізвищем Цай. Цай Юн Псевдо ЧжунланНародився 133(0133)ЧенліуПомер 192Чан'аньПідданство Династія ХаньНаціональність китаєцьДіяльність політик, поетЗнання мов китайська[1]Конфесія конфуціанствоБатько Цай ЛенМати ЮаньДіти 2 сини т...
Rainforest World Music FestivalBand gipsi Prancis membawakan lagu pada RWMF 2006JenisMusic festivalsTanggalPertengahan tahunLokasiKuching, Sarawak, Malaysia Kuching (1998–sekarang) Tahun aktif1998–sekarangPendiriRandy Raine- ReuschAnggaranRM 4 jutaSitus webrwmf.net Rainforest World Music Festival (RWMF), atau Festival Musik Hutan Hujan Dunia, adalah festival musik tahunan selama tiga hari untuk merayakan keberagaman musik dunia, yang diselenggarakan di Kuching, Sarawak, Malaysia, dengan l...
إعصار إيزابيل المعلومات الإعصار إيزابيل 14 سبتمبر 2003 تكون 6 سبتمبر 2003 تلاشى 20 سبتمبر 2003 الفئة 5 أدنى ضغط جوي 915 hPa سرعة الرياح القصوى 275 كم/ساعة المناطق المتأثرة جزر الأنتيل الكبرى، جزر البهاما، وجزء كبير من الساحل الشرقي بالولايات المتحدة وتحديداً في كل من ولاية كارولاينا ال...
Каліфорнія–Україна- державне партнерство Засновані 1993 року Історія БЕЗПЕЧНЕ НЕБО - 2011ШВИДКИЙ ТРИЗУБ - 2012 Співпраця між Національними гвардіями України і Каліфорнії у Вікісховищі Україна Партнерство національної гвардії Каліфорнія — Україна — одне з 22 європей...
Perdana Menteri atau statsminister (kepala negara) adalah kepala Pemerintahan Swedia. Sebelum 1876, saat di mana jabatan Perdana Menteri dimulai, Swedia tidak mempunyai kepala pemerintahan resmi. Arsitek di balik Riksdag baru 1866, Louis De Geer menjadi PM pertama, tetapi ironisnya tidak ada kepemimpinan tak resmi dalam pemerintahan yang menghasilkan pemerintahan. Di bawah Konstitusi 1809 Sejak Konstitusi 1809 sebenarnya sudah ada 2 jabatan, Menteri Negara untuk Peradilan atau justitiestatsmi...
Archetype in mythology This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (February 2017) (Learn how and when to remove this template message) King Arthur by Charles Ernest Butler, 1903 A mythological king is an archetype in mythology. A king is considered a mythological king if he is included and described in the culture's m...
Schronisko PTTK Markowe Szczawiny Nowe schronisko w 2013 Państwo Polska Województwo małopolskie Pasmo Beskid Żywiecki, Karpaty Wysokość 1180 m n.p.m. Data otwarcia 15 września 1906(I schronisko),21 listopada 2009(II schronisko) Właściciel Polskie Towarzystwo Turystyczno-Krajoznawcze Położenie na mapie Beskidu Żywieckiego, Małego i MakowskiegoSchronisko PTTK Markowe Szczawiny Położenie na mapie województwa małopolskiegoSchronisko PTTK Markowe Szczawiny 49°35′16,...
Hyder Ali, Dalavayi of the Kingdom of Mysore A Dalavayi also spelled Dalwai, Dalavay and Dalvoy was a Commander-in-chief[1][2] in Peninsular India. In the Vijayanagara Empire, Vira Narasimha Raya was appointed to the position before being crowned the Emperor of Vijayanagara. And in the Kingdom of Mysore, Commander Hyder Ali and his eldest son Tipu Sultan were appointed to this position. The word Dalavayi is a Prakrit or vernacular form of the Sanskrit word Dalapati (which lite...
Museum Kepresidenan Republik Indonesia Balai kirtiPapan nama Museum Kepresidenan RI Balai KirtiDidirikan18 Oktober 2014LokasiJalan Ir. H. Djuanda No. 1 Kota Bogor, Jawa BaratIndonesiaAkses transportasi umumKA Commuter Jabodetabek: B Stasiun BogorSitus webmuseumkepresidenan.id Museum Kepresidenan Republik Indonesia Balai Kirti adalah sebuah museum yang berada di dalam Kompleks Istana Kepresidenan Bogor, Jalan Ir. Juanda Nomor 1, Kota Bogor, Jawa Barat, Indonesia. Museum ini dibangun khusus unt...
French physicist and priest Edme MariotteBornc. 1620Til-Châtel, FranceDied12 May 1684 (aged 63-64)Paris, FranceNationalityFrenchKnown forDesign of the first Newton's cradle Edme Mariotte (/ˌmɑːriˈɒt/;[1] French: [ɛdmə maʁjɔt]; c. 1620 – 12 May 1684) was a French physicist and priest (abbé).[2] He is particularly well known for formulating Boyle's law independently of Robert Boyle. Mariotte is also credited with designing the first Newton'...
Indoor arena in Omaha, Nebraska This article is about the arena in Omaha formerly known as CenturyLink Center. For the arena in Bossier City, Louisiana formerly known as CenturyLink Center, see Brookshire Grocery Arena. CHI Health Center Omaha[1]Former namesOmaha Arena and Convention Center (planning/construction)Qwest Center Omaha (2003–11)CenturyLink Center Omaha (2011–18)Alternative namesCHI Health CenterOmaha Convention Center and ArenaGeneral informationLocationDowntown Omaha...
2006 filmThe Prisoner or: How I Planned to Kill Tony BlairDirected byMichael TuckerPetra EpperleinWritten byMichael TuckerPetra EpperleinProduced byPetra EpperleinDistributed byTruly IndieRelease dates September 8, 2006 (2006-09-08) (Toronto International Film Festival) March 23, 2007 (2007-03-23) (United States) Running time72 minutesLanguageEnglish The Prisoner or: How I Planned to Kill Tony Blair is a 2006 documentary film by American documentary filmm...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Campo di Brownsea Island Monumento in memoria del primo campo scout sull'isola di Brownsea Evento scout Tipo di evento Locale Località Brownsea, Dorset Nazione Inghilterra Data 1º agosto - 9 agosto 1907 Partecipanti 22 Modifica dati su Wikidata · Manuale Il campo di Brownsea Island è stato il primo campo scout della storia. Robert Baden-Powell, prima di mettere in pratica le sue idee riguardo allo scautismo e all'educazione dei ragazzi, volle sperimentarle, così dal 1° al 9 agosto ...
South African political party (e. 2019) African Transformation Movement AbbreviationATMLeaderVuyolwethu ZungulaFounded2018; 5 years ago (2018)Headquarters Address Fedsure House, 1st Floor, Church Street, Pietermaritzburg, Kwa-Zulu Natal, South Africa IdeologyConservatismChristian democracyPolitical positionCentre-rightSloganTransforming Society For A Better Tomorrow.National Assembly2 / 400NCOP0 / 90Provincial Legislatures2 / 430Websitewww.facebook.com/AfricanTransforma...
For the previous facility located at 2021 Perdido Street, see University Hospital, New Orleans. Hospital in Louisiana, United StatesUniversity Medical Center New OrleansLCMC HealthUniversity Medical Center New Orleans, August 2018GeographyLocation2000 Canal Street, New Orleans, Louisiana, United StatesCoordinates29°57′36″N 90°04′55″W / 29.96013°N 90.08194°W / 29.96013; -90.08194OrganizationCare systemPrivateFunding501(c)3 Not-For-ProfitTypeGeneral, Teaching...
American actor (1975–2015) Nathaniel MarstonMarston in Soap TalkBorn(1975-07-09)July 9, 1975Torrington, Connecticut, U.S.DiedNovember 11, 2015(2015-11-11) (aged 40)Reno, Nevada, U.S.Cause of deathTrauma from motor vehicle accidentOccupation(s)Actor, producerYears active1996–2011Height6 ft 3 in (191 cm)Spouse Rita Bias (m. 2006–2015) Nathaniel Marston (July 9, 1975 – November 11, 2015) was an American acto...
For other people with the same name, see Thomas Chaloner (disambiguation). Chaloner painted by Anthony van Dyck, 1637 Thomas Chaloner[1] (1595–1661) was an English politician, commissioner at the trial of Charles I and signatory to his death warrant. He was born at Steeple Claydon, Buckinghamshire, and was the son of the courtier Sir Thomas Chaloner.[2] In January 1649, he and his younger brother, James Chaloner (1602–1660), served as two of the 135 commissioners of the co...