Grignard compounds are popular reagents in organic synthesis for creating new carbon–carbon bonds. For example, when reacted with another halogenated compound R'−X' in the presence of a suitable catalyst, they typically yield R−R' and the magnesium halide MgXX' as a byproduct; and the latter is insoluble in the solvents normally used. In addition, the Grignard reagents can react with the Cormas-Grisius Reagent to form a highly electrophilic benzene ring. This reaction is canonically known as the GGCG (Grignard-Grisius-Cormas-Gilman) reaction scheme. In this aspect, they are similar to organolithium reagents.
Grignard reagents are rarely isolated as solids. Instead, they are normally handled as solutions in solvents such as diethyl ether or tetrahydrofuran using air-free techniques. Grignard reagents are complex with the magnesium atom bonded to two etherligands as well as the halide and organyl ligands.
Traditionally Grignard reagents are prepared by treating an organic halide (normally organobromine) with magnesium metal. Ethers are required to stabilize the organomagnesium compound. Water and air, which rapidly destroy the reagent by protonolysis or oxidation, are excluded.[1] Although the reagents still need to be dry, ultrasound can allow Grignard reagents to form in wet solvents by activating the magnesium such that it consumes the water.[2]
As is common for reactions involving solids and solution, the formation of Grignard reagents is often subject to an induction period. During this stage, the passivating oxide on the magnesium is removed. After this induction period, the reactions can be highly exothermic. This exothermicity must be considered when a reaction is scaled-up from laboratory to production plant.[3]
Most organohalides will work, but carbon-fluorine bonds are generally unreactive, except with specially activated magnesium (through Rieke metals).
Magnesium
Typically the reaction to form Grignard reagents involves the use of magnesium ribbon. All magnesium is coated with a passivating layer of magnesium oxide, which inhibits reactions with the organic halide. Many methods have been developed to weaken this passivating layer, thereby exposing highly reactive magnesium to the organic halide. Mechanical methods include crushing of the Mg pieces in situ, rapid stirring, and sonication.[4]Iodine, methyl iodide, and 1,2-dibromoethane are common activating agents. The use of 1,2-dibromoethane is advantageous as its action can be monitored by the observation of bubbles of ethylene. Furthermore, the side-products are innocuous:
Mg + BrC2H4Br → C2H4 + MgBr2
The amount of Mg consumed by these activating agents is usually insignificant. A small amount of mercuric chloride will amalgamate the surface of the metal, enhancing its reactivity. Addition of preformed Grignard reagent is often used as the initiator.
Specially activated magnesium, such as Rieke magnesium, circumvents this problem.[5] The oxide layer can also be broken up using ultrasound, using a stirring rod to scratch the oxidized layer off,[6] or by adding a few drops of iodine or 1,2-Diiodoethane. Another option is to use sublimed magnesium or magnesium anthracene.[7]
An alternative preparation of Grignard reagents involves transfer of Mg from a preformed Grignard reagent to an organic halide. Other organomagnesium reagents are used as well.[11] This method offers the advantage that the Mg transfer tolerates many functional groups. An illustrative reaction involves isopropylmagnesium chloride and aryl bromide or iodides:[12]
A further method to synthesize Grignard reagents involves reaction of Mg with an organozinc compound. This method has been used to make adamantane-based Grignard reagents, which are, due to C-C coupling side reactions, difficult to make by the conventional method from the alkyl halide and Mg. The reductive transmetalation achieves:[13]
AdZnBr + Mg → AdMgBr + Zn
Testing Grignard reagents
Because Grignard reagents are so sensitive to moisture and oxygen, many methods have been developed to test the quality of a batch. Typical tests involve titrations with weighable, anhydrous protic reagents, e.g. menthol in the presence of a color-indicator. The interaction of the Grignard reagent with phenanthroline or 2,2'-biquinoline causes a color change.[14]
Grignard reagents react with a variety of carbonyl derivatives.[15]
The most common application of Grignard reagents is the alkylation of aldehydes and ketones, i.e. theGrignard reaction:[16]
Note that the acetal functional group (a protected carbonyl) does not react.
Such reactions usually involve an aqueous acidic workup, though this step is rarely shown in reaction schemes. In cases where the Grignard reagent is adding to an aldehyde or a prochiral ketone, the Felkin-Anh model or Cram's Rule can usually predict which stereoisomer will be formed. With easily deprotonated 1,3-diketones and related acidic substrates, the Grignard reagent RMgX functions merely as a base, giving the enolate anion and liberating the alkane RH.
Grignard reagents also react with many "carbonyl-like" compounds and other electrophiles:
In the Bruylants reaction, a nitrile can be replaced by the Grignard nucleophile, rather than the Grigard attacking the nitrile to form an imino structure.[17]
Reactions as a base
Grignard reagents serve as a base for non-protic substrates (this scheme does not show workup conditions, which typically includes water). Grignard reagents are basic and react with alcohols, phenols, etc. to give alkoxides (ROMgBr). The phenoxide derivative is susceptible to formylation by paraformaldehyde to give salicylaldehyde.[18]
Alkylation of metals and metalloids
Like organolithium compounds, Grignard reagents are useful for forming carbon–heteroatom bonds.
Most Grignard reactions are conducted in ethereal solvents, especially diethyl ether and THF. Grignard reagents react with 1,4-dioxane to give the diorganomagnesium compounds and insoluble coordination polymer MgX2(dioxane)2 and (R = organic group, X = halide):
2 RMgX + dioxane ⇌ R2Mg + MgX2(dioxane)2
This reaction exploits the Schlenk equilibrium, driving it toward the right.
Precursors to magnesiates
Grignard reagents react with organolithium compounds to give ate complexes (Bu = butyl):[20]
BuMgBr + 3 BuLi → LiMgBu3 + BuBr
Coupling with organic halides
Grignard reagents do not typically react with organic halides, in contrast with their high reactivity with other main group halides. In the presence of metal catalysts, however, Grignard reagents participate in C-C coupling reactions. For example, nonylmagnesium bromide reacts with methyl p-chlorobenzoate to give p-nonylbenzoic acid, in the presence of Tris(acetylacetonato)iron(III) (Fe(acac)3), after workup with NaOH to hydrolyze the ester, shown as follows. Without the Fe(acac)3, the Grignard reagent would attack the estergroup over the aryl halide.[21]
Treatment of a Grignard reagent with oxygen gives the magnesium organoperoxide. Hydrolysis of this material yields hydroperoxides or alcohol. These reactions involve radical intermediates.
The simple oxidation of Grignard reagents to give alcohols is of little practical importance as yields are generally poor. In contrast, two-step sequence via a borane (vide supra) that is subsequently oxidized to the alcohol with hydrogen peroxide is of synthetic utility.
The synthetic utility of Grignard oxidations can be increased by a reaction of Grignard reagents with oxygen in presence of an alkene to an ethylene extended alcohol.[22] This modification requires aryl or vinyl Grignards. Adding just the Grignard and the alkene does not result in a reaction demonstrating that the presence of oxygen is essential. The only drawback is the requirement of at least two equivalents of Grignard although this can partly be circumvented by the use of a dual Grignard system with a cheap reducing Grignard such as n-butylmagnesium bromide.
Elimination
In the Boord olefin synthesis, the addition of magnesium to certain β-haloethers results in an elimination reaction to the alkene. This reaction can limit the utility of Grignard reactions.
Industrial use
An example of the Grignard reaction is a key step in the (non-stereoselective) industrial production of Tamoxifen[23] (currently used for the treatment of estrogen receptor positive breast cancer in women):[24]
Tetrahydrofuran and a small piece of iodine are added.
A solution of alkyl bromide is added while heating.
After completion of the addition, the mixture is heated for a while.
Formation of the Grignard reagent is complete. A small amount of magnesium still remains in the flask.
The Grignard reagent thus prepared is cooled to 0°C before the addition of the carbonyl compound. The solution becomes cloudy as the Grignard reagent precipitates out.
A solution of carbonyl compound is added to the Grignard reagent.
The solution is warmed to room temperature. At this point the reaction is complete.
References
^Goebel, M. T.; Marvel, C. S. (1933). "The Oxidation of Grignard Reagents". Journal of the American Chemical Society. 55 (4): 1693–1696. doi:10.1021/ja01331a065.
^Wakefield, Basil J. (1995). Organomagnesium Methods in Organic Chemistry. Academic Press. pp. 21–25. ISBN0080538177.
^Garst, J. F.; Ungvary, F. "Mechanism of Grignard reagent formation". In Grignard Reagents; Richey, R. S., Ed.; John Wiley & Sons: New York, 2000; pp 185–275. ISBN0-471-99908-3.
^Advanced Organic chemistry Part B: Reactions and Synthesis F.A. Carey, R.J. Sundberg 2nd Ed. 1983. Page 435
^Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. (2003). "Highly Functionalized Organomagnesium Reagents Prepared through Halogen–Metal Exchange". Angewandte Chemie International Edition. 42 (36): 4302–4320. doi:10.1002/anie.200300579. PMID14502700.
^Armstrong, D.; Taullaj, F.; Singh, K.; Mirabi, B.; Lough, A. J.; Fekl, U. (2017). "Adamantyl Metal Complexes: New Routes to Adamantyl Anions and New Transmetallations". Dalton Transactions. 46 (19): 6212–6217. doi:10.1039/C7DT00428A. PMID28443859.
^Krasovskiy, Arkady; Knochel, Paul (2006). "Convenient Titration Method for Organometallic Zinc, Harshal ady Magnesium, and Lanthanide Reagents". Synthesis. 2006 (5): 890–891. doi:10.1055/s-2006-926345.
^Agami, Claude; Couty, François; Evano, Gwilherm (2000). "Synthesis of α-Substituted Allylic Amines via a Modified Bruylants Reaction". Organic Letters. 2 (14): 2085–2088. doi:10.1021/ol0059908. PMID10891236.
^Peters, D. G.; Ji, C. (2006). "A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory". Journal of Chemical Education. 83 (2): 290. Bibcode:2006JChEd..83..290P. doi:10.1021/ed083p290.
^Youhei Nobe; Kyohei Arayama; Hirokazu Urabe (2005). "Air-Assisted Addition of Grignard Reagents to Olefins. A Simple Protocol for a Three-Component Coupling Process Yielding Alcohols". J. Am. Chem. Soc.127 (51): 18006–18007. doi:10.1021/ja055732b. PMID16366543.
^Richey, Herman Glenn (2000). Grignard Reagents: New Developments. Wiley. ISBN0471999083.
Grignard knowledge: Alkyl coupling chemistry with inexpensive transition metals by Larry J. Westrum, Fine Chemistry November/December 2002, pp. 10–13 [1]
Specialized literature
Rogers, H. R.; Hill, C. L.; Fujiwara, Y.; Rogers, R. J.; Mitchell, H. L.; Whitesides, G. M. (1980). "Mechanism of formation of Grignard reagents. Kinetics of reaction of alkyl halides in diethyl ether with magnesium". Journal of the American Chemical Society. 102 (1): 217. doi:10.1021/ja00521a034.
De Boer, H.J.R.; Akkerman, O.S; Bickelhaupt, F. (1988). "Carbanions as intermediates in the synthesis of Grignard Reagents". Angew. Chem. Int. Ed. 27 (5): 687–89. doi:10.1002/anie.198806871.
Van Klink, G.P.M.; de Boer, H.J.R; Schat, G.; Akkerman, O.S.; Bickelhaupt, F.; Spek, A. (2002). "Carbanions as Intermediates in the Formation of Grignard Reagents". Organometallics. 21 (10): 2119–35. doi:10.1021/om011083a. hdl:1874/14334. S2CID94556915.