Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. Decomposition can be a gradual process for organisms that have extended periods of dormancy.[1]
One can differentiate abiotic decomposition from biotic decomposition (biodegradation); the former means "the degradation of a substance by chemical or physical processes", e.g., hydrolysis; the latter means "the metabolic breakdown of materials into simpler components by living organisms", typically by microorganisms. Animals, such as earthworms, also help decompose the organic materials on and in soil through their activites. Organisms that do this are known as decomposers or detritivores.
The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb.
Decomposition begins at the moment of death, caused by two factors: autolysis, the breaking down of tissues by the body's own internal chemicals and enzymes, and putrefaction, the breakdown of tissues by bacteria. These processes release compounds such as cadaverine and putrescine, that are the chief source of the unmistakably putrid odor of decaying animal tissue.[2]
Prime decomposers are bacteria or fungi, though larger scavengers also play an important role in decomposition if the body is accessible to insects, mites and other animals. Additionally,[3] soil animals are considered key regulators of decomposition at local scales but their role at larger scales is unresolved. The most important arthropods that are involved in the process include carrion beetles, mites,[4][5] the flesh-flies (Sarcophagidae) and blow-flies (Calliphoridae), such as the green bottle flies seen in the summer. In North America, the most important non-insect animals that are typically involved in the process include mammal and bird scavengers, such as coyotes, dogs, wolves, foxes, rats, crows and vultures.[6] Some of these scavengers also remove and scatter bones, which they ingest at a later time. Aquatic and marine environments have break-down agents that include bacteria, fish, crustaceans, fly larvae[7] and other carrion scavengers.
Stages of decomposition
Five general stages are typically used to describe the process of decomposition in vertebrate animals: fresh, bloat, active decay, advanced decay, and dry/remains.[8] The general stages of decomposition are coupled with two stages of chemical decomposition: autolysis and putrefaction.[9] These two stages contribute to the chemical process of decomposition, which breaks down the main components of the body. With death the microbiome of the living organism collapses and is followed by the necrobiome that undergoes predictable changes over time.[10]
Fresh
Among those animals that have a heart, the fresh stage begins immediately after the heart stops beating. From the moment of death, the body begins cooling or warming to match the temperature of the ambient environment, during a stage called algor mortis. Shortly after death, within three to six hours, the muscular tissues become rigid and incapable of relaxing, during a stage called rigor mortis. Since blood is no longer being pumped through the body, gravity causes it to drain to the dependent portions of the body, creating an overall bluish-purple discoloration termed livor mortis or, more commonly, lividity. Depending on the position of the body, these parts would vary. For instance, if the person was flat on their back when they died, the blood would collect in the parts that are touching the ground. If the person was hanging, it would collect in their fingertips, toes and earlobes.[11]
Once the heart stops, the blood can no longer supply oxygen or remove carbon dioxide from the tissues. The resulting decrease in pH and other chemical changes cause cells to lose their structural integrity, bringing about the release of cellular enzymes capable of initiating the breakdown of surrounding cells and tissues. This process is known as autolysis.[12]
Visible changes caused by decomposition are limited during the fresh stage, although autolysis may cause blisters to appear at the surface of the skin.[13]
The bloat stage provides the first clear visual sign that microbial proliferation is underway. In this stage, anaerobic metabolism takes place, leading to the accumulation of gases, such as hydrogen sulfide, carbon dioxide, methane and nitrogen. The accumulation of gases within the bodily cavity causes the distention of the abdomen and gives a cadaver its overall bloated appearance.[15] The gases produced also cause natural liquids and liquefying tissues to become frothy.[16] As the pressure of the gases within the body increases, fluids are forced to escape from natural orifices, such as the nose, mouth and anus, and enter the surrounding environment. The buildup of pressure combined with the loss of integrity of the skin may also cause the body to rupture.[15]
Intestinal anaerobic bacteria transform haemoglobin into sulfhemoglobin and other colored pigments. The associated gases which accumulate within the body at this time aid in the transport of sulfhemoglobin throughout the body via the circulatory and lymphatic systems, giving the body an overall marbled appearance.[17]
If insects have access, maggots hatch and begin to feed on the body's tissues.[8] Maggot activity, typically confined to natural orifices, and masses under the skin, causes the skin to slip, and hair to detach from the skin.[16] Maggot feeding, and the accumulation of gases within the body, eventually leads to post-mortem skin ruptures which will then further allow purging of gases and fluids into the surrounding environment.[14] Ruptures in the skin allow oxygen to re-enter the body and provide more surface area for the development of fly larvae and the activity of aerobic microorganisms.[15] The purging of gases and fluids results in the strong distinctive odors associated with decay.[8]
Active decay
Active decay is characterized by the period of greatest mass loss. This loss occurs as a result of both the voracious feeding of maggots and the purging of decomposition fluids into the surrounding environment.[15] The purged fluids accumulate around the body and create a cadaver decomposition island (CDI).[18] Liquefaction of tissues and disintegration become apparent during this time and strong odors persist.[8] The end of active decay is signaled by the migration of maggots away from the body to pupate.[14]
Advanced decay
Decomposition is largely inhibited during advanced decay due to the loss of readily available cadaveric material.[15] Insect activity is also reduced during this stage.[16] When the carcass is located on soil, the area surrounding it will show evidence of vegetation death.[15] The CDI surrounding the carcass will display an increase in soil carbon and nutrients such as phosphorus, potassium, calcium and magnesium;[14] changes in pH; and a significant increase in soil nitrogen.[19]
Dry/remains
As the ecosystem recovers from the disturbance, the CDI moves into the dry/remains stage, which is characterized by a decrease in the intensity of the disturbance and an increase in the amount of plant growth around the affected area. This is a sign that the nutrients and other ecological resources present in the surrounding soil have not yet returned to their normal levels.
During this stage, it is important to monitor the ecosystem for any signs of continued disturbance or ecological stress. The resurgence of plant growth is a positive sign, but it may take several years for the ecosystem to fully recover and return to its pre-disturbance state.[15] All that remains of the cadaver at this stage is dry skin, cartilage, and bones,[8] which will become dry and bleached if exposed to the elements.[16] If all soft tissue is removed from the cadaver, it is referred to as completely skeletonized, but if only portions of the bones are exposed, it is referred to as partially skeletonized.[20]
A dead body that has been exposed to the open elements, such as water and air, will decompose more quickly and attract much more insect activity than a body that is buried[21] or confined in special protective gear or artifacts.[22] This is due, in part, to the limited number of insects that can penetrate soil[23] and the lower temperatures under the soil.[24]
The rate and manner of decomposition in an animal body are strongly affected by several factors. In roughly descending degrees of importance,[25] they are:
The speed at which decomposition occurs varies greatly. Factors such as temperature, humidity, and the season of death all determine how fast a fresh body will skeletonize or mummify. A basic guide for the effect of environment on decomposition is given as Casper's Law (or Ratio): if all other factors are equal, then, when there is free access of air a body decomposes twice as fast as if immersed in water and eight times faster than if buried in the earth. Ultimately, the rate of bacterial decomposition acting on the tissue will depend upon the temperature of the surroundings. Colder temperatures decrease the rate of decomposition while warmer temperatures increase it. A dry body will not decompose efficiently. Moisture helps the growth of microorganisms that decompose the organic matter, but too much moisture could lead to anaerobic conditions slowing down the decomposition process.[26]
The most important variable is the body's accessibility to insects, particularly flies. On the surface in tropical areas, invertebrates alone can easily reduce a fully fleshed corpse to clean bones in under two weeks.[27] The skeleton itself is not permanent; acids in soils can reduce it to unrecognizable components.[28] This is one reason given for the lack of human remains found in the wreckage of the Titanic, even in parts of the ship considered inaccessible to scavengers.[29] Freshly skeletonized bone is often called green bone and has a characteristic greasy feel.[30] Under certain conditions (underwater, but also cool, damp soil), bodies may undergo saponification and develop a waxy substance called adipocere, caused by the action of soil chemicals on the body's proteins and fats. The formation of adipocere slows decomposition by inhibiting the bacteria that cause putrefaction.[31]
In extremely dry or cold conditions, the normal process of decomposition is halted – by either lack of moisture or temperature controls on bacterial and enzymatic action – causing the body to be preserved as a mummy. Frozen mummies commonly restart the decomposition process when thawed (see Ötzi the Iceman), whilst heat-desiccated mummies remain so unless exposed to moisture.[32]
The bodies of newborns who never ingested food are an important exception to the normal process of decomposition. They lack the internal microbial flora that produces much of decomposition[33] and quite commonly mummify if kept in even moderately dry conditions.[34]
Anaerobic vs aerobic
Aerobic decomposition takes place in the presence of oxygen. This is most common to occur in nature. Living organisms that use oxygen to survive feed on the body. Anaerobic decomposition takes place in the absence of oxygen. This could be a place where the body is buried in organic material and oxygen cannot reach it. This process of putrefaction has a bad odor accompanied by it due to the hydrogen sulfide and organic matter containing sulfur.[35]
Artificial preservation
Embalming is the practice of delaying the decomposition of human and animal remains. Embalming slows decomposition somewhat but does not forestall it indefinitely. Embalmers typically pay great attention to parts of the body seen by mourners, such as the face and hands. The chemicals used in embalming repel most insects and slow down bacterial putrefaction by either killing existing bacteria in or on the body themselves[36] or by fixing cellular proteins, which means that they cannot act as a nutrient source for subsequent bacterial infections.[37] In sufficiently dry environments, an embalmed body may end up mummified and it is not uncommon for bodies to remain preserved to a viewable extent after decades.[38] Notable viewable embalmed bodies include those of:
Eva Perón of Argentina, whose body was injected with paraffin, was kept perfectly preserved for many years, and still is as far as is known (her body is no longer on public display).[39]
Padre Pio, whose body was injected with formalin before burial in a dry vault from which he was later removed and placed on public display at the San Giovanni Rotondo.[41]
Environmental preservation
A body buried in a sufficiently dry environment may be well preserved for decades. This was observed in the case for murdered civil rights activist Medgar Evers, who was found to be almost perfectly preserved over 30 years after his death, permitting an accurate autopsy when the case of his murder was re-opened in the 1990s.[42]
Bodies submerged in a peatbog may become naturally embalmed, arresting decomposition and resulting in a preserved specimen known as a bog body. The generally cool and anoxic conditions in these environments limits the rate of microbial activity, thus limiting the potential for decomposition.[43] The time for an embalmed body to be reduced to a skeleton varies greatly. Even when a body is decomposed, embalming treatment can still be achieved (the arterial system decays more slowly) but would not restore a natural appearance without extensive reconstruction and cosmetic work, and is largely used to control the foul odors due to decomposition.[37]
An animal can be preserved almost perfectly, for millions of years in a resin such as amber.[44]
There are some examples where bodies have been inexplicably preserved (with no human intervention) for decades or centuries and appear almost the same as when they died. In some religious groups, this is known as incorruptibility. It is not known whether or for how long a body can stay free of decay without artificial preservation.[45]
Various sciences study the decomposition of bodies under the general rubric of forensic science because the usual motive for such studies is to determine the time and cause of death for legal purposes:
Forensic taphonomy specifically studies the processes of decomposition to apply the biological and chemical principles to forensic cases to determine post-mortem interval (PMI), post-burial interval as well as to locate clandestine graves.
Forensic pathology studies the clues to the cause of death found in the corpse as a medical phenomenon.
Forensic entomology studies the insects and other vermin found in corpses; the sequence in which they appear, the kinds of insects, and where they are found in their life cycle are clues that can shed light on the time of death, the length of a corpse's exposure, and whether the corpse was moved.[46][47]
Forensic anthropology is the medico-legal branch of physical anthropology that studies skeletons and human remains, usually to seek clues as to the identity, age, sex, height and ethnicity of their former owner.[48][49]
Decomposition of plant matter occurs in many stages. It begins with leaching by water; the most easily lost and soluble carbon compounds are liberated in this process.[50] Another early process is physical breakup or fragmentation of the plant material into smaller pieces, providing greater surface area for colonization and attack by decomposers. In fallen dead parts of plants (plant litter), this process is largely carried out by saprophagous (detritivorous) soil invertebrate fauna,[51][52] whereas in standing parts of plants, primarily parasitic life-forms such as parasitic plants (e.g. mistletoes), insects (e.g. aphids) and fungi (e.g. polypores) play a major role in breaking down matter, both directly[53] and indirectly via a multitrophic cascading effect[54]
Following this, the plant detritus (consisting of cellulose, hemicellulose, microbial metabolites, and lignin) undergoes chemical alteration by microbes. Different types of compounds decompose at different rates. This is dependent on their chemical structure.[55] For instance, lignin is a component of wood, which is relatively resistant to decomposition and can in fact only be decomposed by certain fungi, such as the white-rot fungi.
Wood decomposition is a complex process involving fungi which transport nutrients to the nutritionally scarce wood from outside environment.[56] Because of this nutritional enrichment, the fauna of saproxylic insects may develop and, in turn, affect dead wood, contributing to decomposition and nutrient cycling in the forest floor.[57]Lignin is one such remaining product of decomposing plants with a very complex chemical structure, causing the rate of microbial breakdown to slow. Warmth increases the speed of plant decay by roughly the same amount, regardless of the composition of the plant.[58]
In most grassland ecosystems, natural damage from fire, detritivores that feed on decaying matter, termites, grazing mammals, and the physical movement of animals through the grass are the primary agents of breakdown and nutrient cycling, while bacteria and fungi play the main roles in further decomposition.[59]
The chemical aspects of plant decomposition always involve the release of carbon dioxide. In fact, decomposition contributes over 90 percent of carbon dioxide released each year.[58]
The decomposition of food, either plant or animal, called spoilage in this context, is an important field of study within food science. Food decomposition can be slowed down by conservation. The spoilage of meat occurs, if the meat is untreated, in a matter of hours or days and results in the meat becoming unappetizing, poisonous or infectious. Spoilage is caused by the practically unavoidable infection and subsequent decomposition of meat by bacteria and fungi, which are borne by the animal itself, by the people handling the meat, and by their implements. Meat can be kept edible for a much longer time – though not indefinitely – if proper hygiene is observed during production and processing, and if appropriate food safety, food preservation and food storage procedures are applied.[60]
Spoilage of food is attributed to contamination from microorganisms such as bacteria, molds and yeasts, along with natural decay of the food.[61] These decomposition bacteria reproduce at rapid rates under conditions of moisture and preferred temperatures. When the proper conditions are lacking the bacteria may form spores which lurk until suitable conditions arise to continue reproduction.[62] Decomposition rates and speed may differ or vary due to abiotic factors such as moisture level, temperature, and soil type. They also vary depending on the initial amount of breakdown caused by the prior consumers in the food chain. This means the form that organic matter is in, original plant or animal, partially eaten, or as faecal matter when the detritivore encounters it. The more broken down the matter, the faster the final decomposition.[63]
Rate of decomposition
The rate of decomposition is governed by three sets of factors: the physical environment (temperature, moisture and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself.[64]
Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in damp, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow (albeit at a slower rate) even after soils become too dry to support plant growth. When the rains return and soils become wet, the osmotic gradient between the bacterial cells and the soil water causes the cells to gain water quickly. Under these conditions, many bacterial cells burst, releasing a pulse of nutrients.[64] Decomposition rates also tend to be slower in acidic soils.[64] Soils which are rich in clay minerals tend to have lower decomposition rates, and thus, higher levels of organic matter.[64] The smaller particles of clay result in a larger surface area that can hold water. The higher the water content of a soil, the lower the oxygen content[65] and consequently, the lower the rate of decomposition. Clay minerals also bind particles of organic material to their surface, making them less accessible to microbes.[64] Soil disturbance like tilling increases decomposition by increasing the amount of oxygen in the soil and by exposing new organic matter to soil microbes.[64]
The quality and quantity of the material available to decomposers is another major factor that influences the rate of decomposition. Substances like sugars and amino acids decompose readily and are considered labile. Cellulose and hemicellulose, which are broken down more slowly, are "moderately labile". Compounds which are more resistant to decay, like lignin or cutin, are considered recalcitrant.[64] Litter with a higher proportion of labile compounds decomposes much more rapidly than does litter with a higher proportion of recalcitrant material. Consequently, dead animals decompose more rapidly than dead leaves, which themselves decompose more rapidly than fallen branches.[64] As organic material in the soil ages, its quality decreases. The more labile compounds decompose quickly, leaving an increasing proportion of recalcitrant material called humus. Microbial cell walls also contain recalcitrant materials like chitin, and these also accumulate as the microbes die, further reducing the quality of older soil organic matter.[64]
^Beasley, James C.; Olson, Zach H.; DeVault, Travis L. (2015). "Ecological role of vertebrate scavengers". In Benbow, M. Eric; Tomberlin, Jeffery K.; Tarone, Aaron M. (eds.). Carrion ecology, evolution, and their applications. Boca Raton, Florida: CRC Press. pp. 107–27. ISBN978-1138893849. Retrieved 14 January 2024.
^ abcdefgCarter, David O.; Tibbett, Mark (2008). "Cadaver decomposition and soil: processes". In Tibbett, Mark; Carter, David O. (eds.). Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. Boca Raton, Florida: CRC Press. pp. 29–51. ISBN978-1-4200-6991-4. Retrieved 28 January 2024.
^Vass, Arpad A.; Bass, William M.; Volt, Jeffrey D.; Foss, John E.; Ammons, John T. (1992). "Time since death determinations of human cadavers using soil solution". Journal of Forensic Sciences. 37 (5): 1236–53. doi:10.1520/JFS13311J. PMID1402750.
^Piombino-Mascali, Dario; Gill-Frerking, Heather; Beckett, Ronald G. (2017). "The taphonomy of natural mummies". In Schotsmans, Eline M. J.; Márquez-Grant, Nicholas; Forbes, Shari L. (eds.). Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Hoboken, New Jersey: John Wiley & Sons. pp. 101–19. doi:10.1002/9781118953358.ch8. ISBN978-1118953327. Retrieved 3 March 2024.
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2018) خوليو غوميز غونزاليس معلومات شخصية الميلاد 13 أغسطس 1994 (العمر 29 سنة)تامبيكو الطول 1.69 م (5 قدم 6 1⁄2 بوصة) مركز اللعب وسط الجنسية المكسيك ...
Это служебный список статей, созданный для координации работ по развитию темы. Его необходимо преобразовать в информационный список или глоссарий, в противном случае перенести в один из проектов.Данный шаблон не устанавливается на информационные списки и глоссарии. О
Ambassador of Australia toSaudi ArabiaIncumbentMark Donovansince 4 October 2021 (2021-10-04)Department of Foreign Affairs and TradeStyleHis ExcellencyReports toMinister for Foreign AffairsResidenceRiyadhNominatorPrime Minister of AustraliaAppointerGovernor General of AustraliaInaugural holderIan HaigFormation1974 The Ambassador of Australia to Saudi Arabia is an officer of the Australian Department of Foreign Affairs and Trade and the head of the Embassy of the Commonwealt...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018) مقاطعة مكراكين الإحداثيات 37°04′N 88°43′W / 37.06°N 88.72°W / 37.06; -88.72...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) حارة غول القشيب وراقة - حارة - تقسيم إداري البلد اليمن المحافظة محافظة صنعاء المديرية مديري
Paulo Sérgio Informasi pribadiNama lengkap Paulo Sérgio Silvestre do NascimentoTanggal lahir 2 Juni 1969 (umur 54)Tempat lahir São Paulo, BrasilTinggi 180 m (590 ft 7 in)Posisi bermain sayap, PenyerangKarier senior*Tahun Tim Tampil (Gol)1988–1993 Corinthians 64 (5)1989–1990 Novorizontino (pinjaman) 0 (0)1993–1997 Bayer Leverkusen 121 (47)1997–1999 Roma 57 (22)1999–2002 Bayern Munich 77 (21)2002 Al-Wahda (UAE) 0 (0)2003 Bahia 8 (0)Tim nasional Brasil 13 (2) * P...
Location of Malta The Lepidoptera of Malta consist of both the butterflies and moths recorded from the island of Malta. Butterflies Hesperiidae Gegenes pumilio (Hoffmannsegg, 1804) Lycaenidae Aricia agestis (Denis & Schiffermuller, 1775) Callophrys rubi (Linnaeus, 1758) Celastrina argiolus (Linnaeus, 1758) Lampides boeticus (Linnaeus, 1767) Leptotes pirithous (Linnaeus, 1767) Lycaena phlaeas (Linnaeus, 1761) Lysandra bellargus (Rottemburg, 1775) Plebejus argus (Linnaeus, 1758) Polyommatus...
Fatal airliner crash in 1998 Thai Airways International Flight 261HS-TIA, the aircraft involved, photographed at Don Mueang International Airport in June 1997AccidentDate11 December 1998 (1998-12-11)SummaryStalled during approach due to pilot error and spatial disorientationSite0.7 km S of Surat Thani International Airport (URT) (Thailand) 09°7′42″N 99°8′17″E / 9.12833°N 99.13806°E / 9.12833; 99.13806AircraftAircraft typeAirbus A310-204A...
Sculpture series in Seattle, Washington, U.S. Dancer's Series: StepsThe 'tango' part of the sculpture, 2022Artist Jack Mackie Charles Greening Year1979 (1979)TypeSculptureMediumSculpture: bronzeBase: concreteConditionWell maintained (1995)LocationSeattle, Washington, United StatesCoordinates47°37′16″N 122°19′15″W / 47.62111°N 122.32083°W / 47.62111; -122.32083 Dancer's Series: Steps is an outdoor 1979 bronze sculpture series by artists Jack Mackie and ...
У этого термина существуют и другие значения, см. Аврора (значения). Аврора Жанры детский, исторический Техники анимации кукольная анимация и рисованная Режиссёр Роман Качанов Авторы сценария Роман Качанов Аркадий Тюрин Роли озвучивали Вячеслав Тихонов Алексей Кон...
Battle fought in February 1979 during the Uganda-Tanzania War For the 1985 battle of the Ugandan Bush War, see Siege of Masaka. Battle of MasakaPart of the Uganda–Tanzania WarMasakaBattle of Masaka (Uganda)Date23–24 February 1979LocationMasaka, UgandaResult Tanzanian-Ugandan rebel victoryTerritorialchanges Masaka captured by Tanzanian and Ugandan rebel forcesBelligerents Tanzania Ugandan rebels UgandaCommanders and leaders David Musuguri John Walden Isaac MaliyamunguBernard Rw...
State legislature election 2020 Wisconsin State Assembly election ← 2018 November 3, 2020 2022 → All 99 seats in the Wisconsin State Assembly50 seats needed for a majority Majority party Minority party Leader Robin Vos Gordon Hintz Party Republican Democratic Leader's seat 63rd–Rochester 54th–Oshkosh Last election 63 seats, 44.8% 36 seats, 53.0% Seats won 61 38 Seat change 2 2 Popular vote 1,665,487 1,402,108 Percentage 53.80% 4...
Series expansion of the equation of state for a many-particle system This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (July 2019) (Learn how and when to remove this template message) This article may...
2013 Mexican filmEspectroFilm posterDirected byAlfonso Pineda UlloaWritten byCarlos Esteban OrozcoJuan Felipe OrozcoAlfonso Pineda UlloaStarringPaz VegaJohanna MurilloAlfonso HerreraMaya ZapataRelease date 1 November 2013 (2013-11-01) CountryMexicoLanguageSpanish Espectro is a 2013 Mexican horror film, writer and directed by Alfonso Pineda Ulloa and starring Paz Vega, Johanna Murillo and Alfonso Herrera. It was released on November 1, 2013.[1] The film is also known as ...
This is a list of Philippine congressional committees (standing committees and special committees) that are currently operating in the Senate of the Philippines, the upper house of the Philippine Congress. The composition of Senate committees is outlined in Rule X of the Rules of the Senate.[1] Standing committees There are 41 standing committees in the Philippine Senate for the 19th Congress as of September 28, 2022.[2] According to the Rules of the Senate, the President Pro ...
Filipino actress and model (born 1986) In this article, the surname is Halili (Philippine patronymic surname), and his middle name is Iren Pe (Chinese matronymic surname). Katrina HaliliHalili at the 2008 PhilExpo, New JerseyBornMaria Katrina Iren Pe Halili (1986-01-04) January 4, 1986 (age 37)Quezon City, PhilippinesYears active2003–presentAgentSparkle (2003–present)Known forPrima Donnas Marimar The Stepdaughters Destiny Rose Unica Hija Maria Katrina Iren Pe Halili (born J...
Municipality in Bern, SwitzerlandOberdiessbachMunicipality FlagCoat of armsLocation of Oberdiessbach OberdiessbachShow map of SwitzerlandOberdiessbachShow map of Canton of BernCoordinates: 46°50′N 7°37′E / 46.833°N 7.617°E / 46.833; 7.617CountrySwitzerlandCantonBernDistrictBern-MittellandGovernment • MayorHans-Rudolf VogtArea[1] • Total8.2 km2 (3.2 sq mi)Elevation605 m (1,985 ft)Population (31 Decemb...
View of Portreath Harbour; the tramroad approached from the right centre of the picture, between the two rows of white-faced houses The Portreath Tramroad, or alternatively the Portreath Tramway, was opened in 1815, providing a wagonway route from mines near Scorrier in Cornwall, England, to a port at Portreath. From there, it could be transported to market by coastal shipping. It was later extended to serve the Poldice mine near St Day and became known as the Poldice Tramroad, or Poldice Tra...
Counties covered by the Automobile Club of Southern California (red) and AAA NCNU (blue) AAA Northern California, Nevada and Utah (AAA NCNU), formerly known as the California State Automobile Association (CSAA), is one of the largest motor clubs in the American Automobile Association (AAA) National Federation. As the name states, it serves members in Northern California, Nevada, and Utah. It is headquartered in Walnut Creek, California. History The California State Automobile Association trac...