Critical point (thermodynamics)

  1. Subcritical ethane, liquid and gas phase coexist.
  2. Critical point (32.17 °C, 48.72 bar), displaying critical opalescence.
  3. Supercritical ethane, fluid.[1]

In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas comes into a supercritical phase, and so cannot be liquefied by pressure alone. At the critical point, defined by a critical temperature Tc and a critical pressure pc, phase boundaries vanish. Other examples include the liquid–liquid critical points in mixtures, and the ferromagnet–paramagnet transition (Curie temperature) in the absence of an external magnetic field.[2]

Liquid–vapor critical point

Overview

The liquid–vapor critical point in a pressure–temperature phase diagram is at the high-temperature extreme of the liquid–gas phase boundary. The dashed green line shows the anomalous behavior of water.

For simplicity and clarity, the generic notion of critical point is best introduced by discussing a specific example, the vapor–liquid critical point. This was the first critical point to be discovered, and it is still the best known and most studied one.

The figure shows the schematic P-T diagram of a pure substance (as opposed to mixtures, which have additional state variables and richer phase diagrams, discussed below). The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature Tc and critical pressure pc. This is the critical point.

The critical point of water occurs at 647.096 K (373.946 °C; 705.103 °F) and 22.064 megapascals (3,200.1 psi; 217.75 atm; 220.64 bar).[3]

In the vicinity of the critical point, the physical properties of the liquid and the vapor change dramatically, with both phases becoming even more similar. For instance, liquid water under normal conditions is nearly incompressible, has a low thermal expansion coefficient, has a high dielectric constant, and is an excellent solvent for electrolytes. Near the critical point, all these properties change into the exact opposite: water becomes compressible, expandable, a poor dielectric, a bad solvent for electrolytes, and mixes more readily with nonpolar gases and organic molecules.[4]

At the critical point, only one phase exists. The heat of vaporization is zero. There is a stationary inflection point in the constant-temperature line (critical isotherm) on a PV diagram. This means that at the critical point:[5][6][7]

Isotherms of a gas. The red line is the critical isotherm, with critical point K. The dashed lines represent parts of isotherms which are forbidden since the gradient would be positive, giving the gas in this region a negative compressibility.

Above the critical point there exists a state of matter that is continuously connected with (can be transformed without phase transition into) both the liquid and the gaseous state. It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom,[8] who identified a pT line that separates states with different asymptotic statistical properties (Fisher–Widom line).

Sometimes[ambiguous] the critical point does not manifest in most thermodynamic or mechanical properties, but is "hidden" and reveals itself in the onset of inhomogeneities in elastic moduli, marked changes in the appearance and local properties of non-affine droplets, and a sudden enhancement in defect pair concentration.[9]

History

Critical carbon dioxide exuding fog while cooling from supercritical to critical temperature.

The existence of a critical point was first discovered by Charles Cagniard de la Tour in 1822[10][11] and named by Dmitri Mendeleev in 1860[12][13] and Thomas Andrews in 1869.[14] Cagniard showed that CO2 could be liquefied at 31 °C at a pressure of 73 atm, but not at a slightly higher temperature, even under pressures as high as 3000 atm.

Theory

Solving the above condition for the van der Waals equation, one can compute the critical point as[5]

However, the van der Waals equation, based on a mean-field theory, does not hold near the critical point. In particular, it predicts wrong scaling laws.

To analyse properties of fluids near the critical point, reduced state variables are sometimes defined relative to the critical properties[15]

The principle of corresponding states indicates that substances at equal reduced pressures and temperatures have equal reduced volumes. This relationship is approximately true for many substances, but becomes increasingly inaccurate for large values of pr.

For some gases, there is an additional correction factor, called Newton's correction, added to the critical temperature and critical pressure calculated in this manner. These are empirically derived values and vary with the pressure range of interest.[16]

Table of liquid–vapor critical temperature and pressure for selected substances

Substance[17][18] Critical temperature Critical pressure (absolute)
Argon −122.4 °C (150.8 K) 48.1 atm (4,870 kPa)
Ammonia (NH3)[19] 132.4 °C (405.5 K) 111.3 atm (11,280 kPa)
R-134a 101.06 °C (374.21 K) 40.06 atm (4,059 kPa)
R-410A 72.8 °C (345.9 K) 47.08 atm (4,770 kPa)
Bromine 310.8 °C (584.0 K) 102 atm (10,300 kPa)
Caesium 1,664.85 °C (1,938.00 K) 94 atm (9,500 kPa)
Chlorine 143.8 °C (416.9 K) 76.0 atm (7,700 kPa)
Ethane (C2H6) 31.17 °C (304.32 K) 48.077 atm (4,871.4 kPa)
Ethanol (C2H5OH) 241 °C (514 K) 62.18 atm (6,300 kPa)
Fluorine −128.85 °C (144.30 K) 51.5 atm (5,220 kPa)
Helium −267.96 °C (5.19 K) 2.24 atm (227 kPa)
Hydrogen −239.95 °C (33.20 K) 12.8 atm (1,300 kPa)
Krypton −63.8 °C (209.3 K) 54.3 atm (5,500 kPa)
Methane (CH4) −82.3 °C (190.8 K) 45.79 atm (4,640 kPa)
Neon −228.75 °C (44.40 K) 27.2 atm (2,760 kPa)
Nitrogen −146.9 °C (126.2 K) 33.5 atm (3,390 kPa)
Oxygen (O2) −118.6 °C (154.6 K) 49.8 atm (5,050 kPa)
Carbon dioxide (CO2) 31.04 °C (304.19 K) 72.8 atm (7,380 kPa)
Nitrous oxide (N2O) 36.4 °C (309.5 K) 71.5 atm (7,240 kPa)
Sulfuric acid (H2SO4) 654 °C (927 K) 45.4 atm (4,600 kPa)
Xenon 16.6 °C (289.8 K) 57.6 atm (5,840 kPa)
Lithium 2,950 °C (3,220 K) 652 atm (66,100 kPa)
Mercury 1,476.9 °C (1,750.1 K) 1,720 atm (174,000 kPa)
Sulfur 1,040.85 °C (1,314.00 K) 207 atm (21,000 kPa)
Iron 8,227 °C (8,500 K)
Gold 6,977 °C (7,250 K) 5,000 atm (510,000 kPa)
Aluminium 7,577 °C (7,850 K)
Water (H2O)[3][20] 373.946 °C (647.096 K) 217.7 atm (22,060 kPa)

Mixtures: liquid–liquid critical point

A plot of typical polymer solution phase behavior including two critical points: a LCST and an UCST

The liquid–liquid critical point of a solution, which occurs at the critical solution temperature, occurs at the limit of the two-phase region of the phase diagram. In other words, it is the point at which an infinitesimal change in some thermodynamic variable (such as temperature or pressure) leads to separation of the mixture into two distinct liquid phases, as shown in the polymer–solvent phase diagram to the right. Two types of liquid–liquid critical points are the upper critical solution temperature (UCST), which is the hottest point at which cooling induces phase separation, and the lower critical solution temperature (LCST), which is the coldest point at which heating induces phase separation.

Mathematical definition

From a theoretical standpoint, the liquid–liquid critical point represents the temperature–concentration extremum of the spinodal curve (as can be seen in the figure to the right). Thus, the liquid–liquid critical point in a two-component system must satisfy two conditions: the condition of the spinodal curve (the second derivative of the free energy with respect to concentration must equal zero), and the extremum condition (the third derivative of the free energy with respect to concentration must also equal zero or the derivative of the spinodal temperature with respect to concentration must equal zero).

See also

References

  1. ^ Horstmann, Sven (2000). Theoretische und experimentelle Untersuchungen zum Hochdruckphasengleichgewichtsverhalten fluider Stoffgemische für die Erweiterung der PSRK-Gruppenbeitragszustandsgleichung [Theoretical and experimental investigations of the high-pressure phase equilibrium behavior of fluid mixtures for the expansion of the PSRK group contribution equation of state] (Ph.D.) (in German). Oldenburg, Germany: Carl-von-Ossietzky Universität Oldenburg. ISBN 3-8265-7829-5. OCLC 76176158.
  2. ^ Stanley, H. Eugene (1987). Introduction to phase transitions and critical phenomena. New York: Oxford University Press. ISBN 0-19-505316-8. OCLC 15696711.
  3. ^ a b Wagner, W.; Pruß, A. (June 2002). "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use". Journal of Physical and Chemical Reference Data. 31 (2): 398. doi:10.1063/1.1461829.
  4. ^ Anisimov, Sengers, Levelt Sengers (2004): Near-critical behavior of aqueous systems. Chapter 2 in Aqueous System at Elevated Temperatures and Pressures Palmer et al., eds. Elsevier.
  5. ^ a b P. Atkins and J. de Paula, Physical Chemistry, 8th ed. (W. H. Freeman 2006), p. 21.
  6. ^ K. J. Laidler and J. H. Meiser, Physical Chemistry (Benjamin/Cummings 1982), p. 27.
  7. ^ P. A. Rock, Chemical Thermodynamics (MacMillan 1969), p. 123.
  8. ^ Fisher, Michael E.; Widom, B. (1969). "Decay of Correlations in Linear Systems". Journal of Chemical Physics. 50 (9): 3756. Bibcode:1969JChPh..50.3756F. doi:10.1063/1.1671624. Retrieved 9 January 2023.
  9. ^ Das, Tamoghna; Ganguly, Saswati; Sengupta, Surajit; Rao, Madan (3 June 2015). "Pre-Yield Non-Affine Fluctuations and A Hidden Critical Point in Strained Crystals". Scientific Reports. 5 (1): 10644. Bibcode:2015NatSR...510644D. doi:10.1038/srep10644. PMC 4454149. PMID 26039380.
  10. ^ Charles Cagniard de la Tour (1822). "Exposé de quelques résultats obtenu par l'action combinée de la chaleur et de la compression sur certains liquides, tels que l'eau, l'alcool, l'éther sulfurique et l'essence de pétrole rectifiée" [Presentation of some results obtained by the combined action of heat and compression on certain liquids, such as water, alcohol, sulfuric ether (i.e., diethyl ether), and distilled petroleum spirit]. Annales de Chimie et de Physique (in French). 21: 127–132.
  11. ^ Berche, B., Henkel, M., Kenna, R (2009) Critical phenomena: 150 years since Cagniard de la Tour. Journal of Physical Studies 13 (3), pp. 3001-1–3001-4.
  12. ^ Mendeleev called the critical point the "absolute temperature of boiling" (Russian: абсолютная температура кипения; German: absolute Siedetemperatur).
    • Менделеев, Д. (1861). "О расширении жидкостей от нагревания выше температуры кипения" [On the expansion of liquids from heating above the temperature of boiling]. Горный Журнал [Mining Journal] (in Russian). 4: 141–152. The "absolute temperature of boiling" is defined on p. 151. Available at Wikimedia
    • German translation: Mendelejeff, D. (1861). "Ueber die Ausdehnung der Flüssigkeiten beim Erwärmen über ihren Siedepunkt" [On the expansion of fluids during heating above their boiling point]. Annalen der Chemie und Pharmacie (in German). 119: 1–11. doi:10.1002/jlac.18611190102. The "absolute temperature of boiling" is defined on p. 11: "Als absolute Siedetemperatur müssen wir den Punkt betrachten, bei welchem 1) die Cohäsion der Flüssigkeit = 0° ist und a2 = 0, bei welcher 2) die latente Verdamfungswärme auch = 0 ist und bei welcher sich 3) die Flüssigkeit in Dampf verwandelt, unabhängig von Druck und Volum." (As the "absolute temperature of boiling" we must regard the point at which (1) the cohesion of the liquid equals 0° and a2 = 0 [where a2 is the coefficient of capillarity, p. 6], at which (2) the latent heat of vaporization also equals zero, and at which (3) the liquid is transformed into vapor, independently of the pressure and the volume.)
    • In 1870, Mendeleev asserted, against Thomas Andrews, his priority regarding the definition of the critical point: Mendelejeff, D. (1870). "Bemerkungen zu den Untersuchungen von Andrews über die Compressibilität der Kohlensäure" [Comments on Andrews' investigations into the compressibility of carbon dioxide]. Annalen der Physik. 2nd series (in German). 141 (12): 618–626. Bibcode:1870AnP...217..618M. doi:10.1002/andp.18702171218.
  13. ^ Landau, Lifshitz, Theoretical Physics, Vol. V: Statistical Physics, Ch. 83 [German edition 1984].
  14. ^ Andrews, Thomas (1869). "The Bakerian lecture: On the continuity of the gaseous and liquid states of matter". Philosophical Transactions of the Royal Society. 159. London: 575–590. doi:10.1098/rstl.1869.0021. S2CID 96898875. The term "critical point" appears on page 588.
  15. ^ Cengel, Yunus A.; Boles, Michael A. (2002). Thermodynamics: an engineering approach. Boston: McGraw-Hill. pp. 91–93. ISBN 978-0-07-121688-3.
  16. ^ Maslan, Frank D.; Littman, Theodore M. (1953). "Compressibility Chart for Hydrogen and Inert Gases". Ind. Eng. Chem. 45 (7): 1566–1568. doi:10.1021/ie50523a054.
  17. ^ Emsley, John (1991). The Elements (Second ed.). Oxford University Press. ISBN 978-0-19-855818-7.
  18. ^ Cengel, Yunus A.; Boles, Michael A. (2002). Thermodynamics: An Engineering Approach (Fourth ed.). McGraw-Hill. pp. 824. ISBN 978-0-07-238332-4.
  19. ^ "Ammonia – NH3 – Thermodynamic Properties". www.engineeringtoolbox.com. Retrieved 2017-04-07.
  20. ^ "Critical Temperature and Pressure". Purdue University. Retrieved 2006-12-19.

Further reading

Read other articles:

Artikel ini sebagian besar atau seluruhnya berasal dari satu sumber. Tolong bantu untuk memperbaiki artikel ini dengan menambahkan rujukan ke sumber lain yang tepercaya. Namjeju 남제주GunTranskripsi Korea • Hangeul남제주군 • Hanja南濟州郡 • Alih Aksara yang DisempurnakanNamjeju-gun • McCune-ReischauerNamcheju-gun BenderaLambang NamjejuNegara Korea SelatanRegionJejuPopulasi • DialekJeju Kabupaten Namjeju (Namjeju-...

 

Golf Cup of Nations 2002 Toernooi-informatie Gastland  Saoedi-Arabië Datum 16 januari 2002 – 30 januari 2002 Teams 6 (van 1 confederatie) Stadions 1 (in 1 gaststad) Winnaar  Saoedi-Arabië (2e titel) Toernooistatistieken Wedstrijden 15 Doelpunten 33  (2,2 per wedstrijd) Topscorer(s) Hani Al-Dhabit (5 doelpunten) Beste speler Jaffal Rashed Portaal    Voetbal De Golf Cup of Nations 2002 was de 15e editie van dit voetbaltoernooi dat werd gehouden in Saoedi-A...

 

O Circuito Brasileiro de Voleibol de Praia - Challenger de 2018, também chamado de Circuito Banco do Brasil de Vôlei de Praia Challenger, foi a sétima edição da principal competição nacional de Vôlei de Praia Challenger na variante feminina, iniciado em 7 de junho de 2018[1]. Resultados Circuito Challenger Evento Ouro Prata Bronze Quarto lugar 1ª EtapaMaringá, Paraná7 a 10 de junho de 2018[1][2]. /Ana Patrícia Ramos Rebecca Cavalcante /Andressa Cavalcanti Juliana Felisberta Silva ...

Сем Воукс Сем Воукс Особисті дані Повне ім'я Семюел Майкл Воукс Народження 21 жовтня 1989(1989-10-21) (34 роки)   Саутгемптон, Англія Зріст 186 см Вага 75 кг Громадянство  Уельс Позиція нападник Інформація про клуб Поточний клуб «Сток Сіті» Номер 9 Юнацькі клуби 2005—2006 «Борнму

 

El texto que sigue es una traducción incompleta. Si quieres colaborar con Wikipedia, busca el artículo original y finaliza esta traducción.Copia y pega el siguiente código en la página de discusión del autor de este artículo: {{subst:Aviso traducción incompleta|Protocolo de Londres (1830)}} ~~~~ Expansión del Reino de Grecia (1832-1947) El Protocolo de Londres de 1830 fue un tratado firmado entre el Reino de Francia, el Imperio Ruso y el Reino Unido de Gran Bretaña e Irlanda el 3 de...

 

Painting series by William Hogarth This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Humours of an Election – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) The Humours of an Election is a series of four oil paintings and later engravings by Will...

State park in Utah, United States Sand Hollow State ParkIUCN category V (protected landscape/seascape)Red Mountain in Sand Hollow State ParkLocation of Sand Hollow State Park in UtahShow map of UtahSand Hollow State Park (the United States)Show map of the United StatesLocationWashington County, Utah, United StatesCoordinates37°6′56″N 113°22′35″W / 37.11556°N 113.37639°W / 37.11556; -113.37639Area20,611 acres (83.41 km2)[1]Elevation3,000 ft...

 

Song by Tyga This Music needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this Music. Unsourced material may be challenged and removed.Find sources: Feel Me Tyga song – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this template message) Feel MeSingle by Tyga featuring Kanye Westfrom the album BitchImTheShit2 ReleasedJanuary ...

 

Coinage of Scotland before 1707 For coins circulating in Scotland post-1707, see Coins of the pound sterling. For modern Scottish banknotes, see Banknotes of Scotland. From c. 1124 until 1709 the coinage of Scotland was unique, and minted locally. A wide variety of coins, such as the plack, bodle, bawbee, dollar and ryal were produced over that time. For trading purposes coins of Northumbria and various other places had been used before that time; and since 1709 those of the Kingdom of ...

Short story collection by Nalo Hopkinson Skin Folk AuthorNalo HopkinsonCover artistMark HarrisonCountryUnited StatesLanguageEnglishGenreScience fiction, horrorPublisherWarner AspectPublished in English2001Media typePrint (paperback)Pages272ISBN0-446-67803-1OCLC46975003Dewey Decimal813/.54 21LC ClassPR9199.3.H5927 S58 2001 Skin Folk is a story collection by Jamaican-Canadian writer Nalo Hopkinson, published in 2001. Winner of the 2002 World Fantasy Award for Best Story Coll...

 

Church in West Sussex, United KingdomSt Richard's ChurchSt Richard of Chichester ChurchSt Richard's ChurchLocation in Chichester50°49′58″N 0°46′37″W / 50.8329°N 0.7770°W / 50.8329; -0.7770OS grid referenceSU8622004416LocationChichester, West SussexCountryUnited KingdomDenominationRoman CatholicWebsiteStRichardsChichester.co.ukHistoryStatusActiveDedicationRichard of ChichesterConsecrated21 March 1998ArchitectureFunctional statusParish churchHeritage designat...

 

Austrian mathematician (1842–1905) Otto Stolz Otto Stolz (3 July 1842 – 23 November 1905)[1] was an Austrian mathematician noted for his work on mathematical analysis and infinitesimals. Born in Hall in Tirol, he studied in Innsbruck from 1860 and in Vienna from 1863, receiving his habilitation there in 1867. Two years later he studied in Berlin under Karl Weierstrass, Ernst Kummer and Leopold Kronecker, and in 1871 heard lectures in Göttingen by Alfred Clebsch and Felix Klein (w...

1944 novel by Olaf Stapledon For other uses, see Sirius (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's plot summary may be too long or excessively detailed. Please help improve it by removing unnecessary details and making it more concise. (March 2023) (Learn how and when to remove this template message) The topic of this article may not meet Wikipedia's ...

 

Public transit exchange in Metro Vancouver, Canada UBC ExchangeUnloading zone located at the north loopGeneral informationLocationUniversity Endowment LandsBritish Columbia, CanadaCoordinates49°16′6″N 123°14′52″W / 49.26833°N 123.24778°W / 49.26833; -123.24778Operated byTransLinkBus routes16Bus stands13Bus operatorsCoast Mountain Bus CompanyConnections 99 B-Line R4 41st AveOther informationFare zone1HistoryOpenedSeptember 1945Rebuilt1988, 2003, 2017–19Pre...

 

Bridge in Goa, India Jakni Bandh bridgeThe Jakni Bandh bridge, 2014Coordinates15°14′29.61″N 73°58′29.61″E / 15.2415583°N 73.9748917°E / 15.2415583; 73.9748917CrossesSal RiverLocaleJackniband, Goa, IndiaMaintained byGoa State Infrastructure Development Corporation LimitedCharacteristicsDesignArch bridgeHistoryOpenedPrior to 1979Location The Jakni Bandh bridge is a temporary bridge or culvert connecting the village of Dramapur and the census town of Navelim. ...

Bài này không có nguồn tham khảo nào. Mời bạn giúp cải thiện bài bằng cách bổ sung các nguồn tham khảo đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. Nếu bài được dịch từ Wikipedia ngôn ngữ khác thì bạn có thể chép nguồn tham khảo bên đó sang đây. (tháng 4 năm 2017) Sa quốc Bulgaria Tên bản ngữ Царство БългарияTsarstvo Bŭlgariya 1908–1946 Quốc kỳ Hoàn...

 

Basilius Hus Roricingas Fæder Ivan III of Moscow Modor Sophia Palaiologina Geboren 25 Hreðmonað 1479Moscoƿ Deaþ 3 Gēolmōnaþ 1533Moscoƿ Basilius III Iohanning wæs Moscow Heahealdor fram 1505 oð 1533. He wæs Iohannes III Basiling sunu and his modor wæs Sophia Paleologue. Basilius Brego hæde þreo gebroðor: Georgius (geboren in 1480), Simeon (geboren in 1487) and Andreas (geboren in 1490), and eac fif seoster: twa sweoster wærpon geboren and steaf beforan an wintre (Elene in 147...

 

الشقاونة تقسيم إداري البلد المغرب  الجهة الرباط سلا القنيطرة الإقليم القنيطرة الدائرة سوق الأربعاء الغرب الجماعة القروية عرباوة المشيخة عرباوة السكان التعداد السكاني 326 نسمة (إحصاء 2004)   • عدد الأسر 50 معلومات أخرى التوقيت ت ع م±00:00 (توقيت قياسي)[1]،  وت ع م+01:00 (تو...

Guyanese-American actress (b. 1952) CCH PounderPounder in 2002BornCarol Christine Hilaria Pounder (1952-12-25) December 25, 1952 (age 71)Georgetown, British GuyanaNationalityAmericanEducationEast Sussex CollegeIthaca College (BFA)OccupationActressYears active1979–presentSpouse Boubacar Kone ​ ​(m. 1990; died 2016)​[1]Children3Websitecchpounder.net Carol Christine Hilaria Pounder (born December 25, 1952)[2] is a Guyane...

 

Buddies in IndiaPoster teaser TiongkokNama lainTionghoa大闹天竺 SutradaraWang BaoqiangPemeranWang BaoqiangBai Ke Vikramjeet VirkYue YunpengLiu YanPenata musikSunny SubramanianPerusahaanproduksiLekaihua Entertainment (Wuxi)Huoerguosi Enlight Media浙江诸暨升维传媒有限公司Beijing Hairun PicturesTianjin Maoyan MediaYiMa Shidai Media (Beijing)Shanghai Mengmi MediaBeijing Wanhe Tianyi Media[1]DistributorTianjin Maoyan MediaBeijing Enlight PicturesHuaxia Film Dist...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!