Standard molar entropy

In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often (but not necessarily) chosen to be the standard temperature and pressure.

The standard molar entropy at pressure = is usually given the symbol , and has units of joules per mole per kelvin (J⋅mol−1⋅K−1). Unlike standard enthalpies of formation, the value of is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature. The entropy of a pure crystalline structure can be 0 J⋅mol−1⋅K−1 only at 0 K, according to the third law of thermodynamics. However, this assumes that the material forms a 'perfect crystal' without any residual entropy. This can be due to crystallographic defects, dislocations, and/or incomplete rotational quenching within the solid, as originally pointed out by Linus Pauling.[1] These contributions to the entropy are always present, because crystals always grow at a finite rate and at temperature. However, the residual entropy is often quite negligible and can be accounted for when it occurs using statistical mechanics.

Thermodynamics

If a mole of a solid substance is a perfectly ordered solid at 0 K, then if the solid is warmed by its surroundings to 298.15 K without melting, its absolute molar entropy would be the sum of a series of N stepwise and reversible entropy changes. The limit of this sum as becomes an integral:

In this example, and is the molar heat capacity at a constant pressure of the substance in the reversible process k. The molar heat capacity is not constant during the experiment because it changes depending on the (increasing) temperature of the substance. Therefore, a table of values for is required to find the total molar entropy. The quantity represents the ratio of a very small exchange of heat energy to the temperature T. The total molar entropy is the sum of many small changes in molar entropy, where each small change can be considered a reversible process.

Chemistry

The standard molar entropy of a gas at STP includes contributions from:[2]

Changes in entropy are associated with phase transitions and chemical reactions. Chemical equations make use of the standard molar entropy of reactants and products to find the standard entropy of reaction:[3]

The standard entropy of reaction helps determine whether the reaction will take place spontaneously. According to the second law of thermodynamics, a spontaneous reaction always results in an increase in total entropy of the system and its surroundings:

Molar entropy is not the same for all gases. Under identical conditions, it is greater for a heavier gas.

See also

References

  1. ^ Pauling, Linus (1960). The Nature of the Chemical Bond (3rd ed.). Ithaca, NY: Cornell University Press.
  2. ^ Kosanke, K. (2004). "Chemical Thermodynamics". Pyrotechnic chemistry. Journal of Pyrotechnics. p. 29. ISBN 1-889526-15-0.
  3. ^ Chang, Raymond; Cruickshank, Brandon (2005). "Entropy, Free Energy and Equilibrium". Chemistry. McGraw-Hill Higher Education. p. 765. ISBN 0-07-251264-4.

Read other articles:

CCAA women's basketball tournamentConference basketball championshipSportBasketballConferenceCalifornia Collegiate Athletic AssociationNumber of teams8FormatSingle-elimination tournamentCurrent stadiumRIMAC ArenaCurrent locationSan Diego, CAPlayed1986–1995, 2008–presentCurrent championCal State San Marcos (1st)Most championshipsCal Poly Pomona (11)Official websiteCCAA women's basketballHost stadiumsCampus Sites (2008–2012, 2017–present)Citizens Business Bank Arena (2013–2014)Stockto...

 

2013 compilation album by Tim McGrawTim McGraw & FriendsCompilation album by Tim McGrawReleasedJanuary 22, 2013 (2013-01-22)GenreCountryLength45:27LabelCurbProducerVariousTim McGraw chronology Emotional Traffic(2012) Tim McGraw & Friends(2013) Two Lanes of Freedom(2013) Tim McGraw & Friends is the eighth compilation album by American country music singer Tim McGraw. It was released on January 22, 2013, by Curb Records.[1] Background Tim McGraw & ...

 

李存義可以是下列人物: 李存義 (後唐),封睦王,為後唐莊宗李存勗冤殺。養子郭從謙為之報仇,史稱興教門之變。 李存義 (明朝),(?-1385年),明朝開國功臣李善長之弟。洪武十八年(1385年),與其子李佑同死於胡惟庸案。 李存義 (清朝),(1847年-1921年),原名存毅,字肅堂。晚清的武术名家。形意拳一代宗师,亦精通八卦掌。 这是一个消歧义页,羅列了有相同或...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) تشارلز سولومون   معلومات شخصية الميلاد 29 أكتوبر 1889[1]  نيويورك  الوفاة 8 ديسمبر 1963 (74 سنة)   بروكلين  مواطنة الولايات المتحدة  الحياة العملية ...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Daftar acara RCTI – berita · surat kabar · buku · cendekiawan · JSTOR (Juni 2023) Logo RCTI Halaman ini memuat daftar acara yang ditayangkan RCTI. Program saat ini Berita Seputar iNews (sebelumnya bernama Sep...

 

8,000 year old skeleton found in Minnesota, USA Skull of Minnesota Woman unearthed in 1931 Second redigging of the Minnesota Woman site by the University of Minnesota, looking toward the west bank of the highway cut, unearthed in 1931 Minnesota Woman, also known as Pelican Rapids-Minnesota Woman (c. 5947–5931 BC), is the skeletal remains of a woman thought to be 8,000 years old.[1] The bones were found near Pelican Rapids, Minnesota on June 16, 1931, during construction on U.S. Rout...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Berkas:Suku Tobalo.jpg Suku To Balo yang terdapat pada pegunungan Bulu Pao yang terbentang luas melintasi wilayah Kabupaten Barru dan Kabupaten Pangkep Sulsel sejak ratusan tahun lalu. Suku To Balo mempunyai tampilan kulit yang tidak seperti masyarakat...

 

العلاقات الإريترية البلغارية إريتريا بلغاريا   إريتريا   بلغاريا تعديل مصدري - تعديل   العلاقات الإريترية البلغارية هي العلاقات الثنائية التي تجمع بين إريتريا وبلغاريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

この項目では、物理的な現象と、その応用について説明しています。その他の用法については「共鳴 (曖昧さ回避)」をご覧ください。 「レゾナンス」はこの項目へ転送されています。その他の用法については「レゾナンス (曖昧さ回避)」をご覧ください。 この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上に...

 

Casey FitzRandolph Medallista olímpico Datos personalesNacimiento Madison, Estados Unidos21 de enero de 1975 (48 años)Carrera deportivaRepresentante de  Estados UnidosDeporte Patinaje de velocidad               Medallero Patinaje de velocidad masculino Evento O P B Juegos Olímpicos 1 0 0 Campeonato Mundial Dist. Ind. 0 0 1 Campeonato Mundial Dist. Corta 0 1 1 Página web oficial[editar datos en Wikidata&#x...

 

Type of stochastic process In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time.[1] Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles around the trend ...

Бемово Герб Варшава Дата основания 1994 Первое упоминание 1994 Прежний статус Дзельница (район) Площадь 24,95  км² Население 119113 [1] чел. Глава администрации Jarosław Dąbrowski (бурмистр) Телефонные коды 22 Официальный сайт Медиафайлы на Викискладе Схема дзельницы Бемово Ратуш...

 

Даяки танцуют на церемонии открытия XVII Индонезийских игр[en], проходившей на стадионе Паларан, Сараминда Спорт в Индонезии популярен как в аспекте участия, так и в аспекте посещаемости. Самыми популярными видами спорта в Индонезии являются бадминтон, футбол, и традиционн...

 

Atletiek op de Olympische Zomerspelen 1900 Marathon mannen Michel Théato komt over de finish Gehouden in Parijs Jaar 1900 Data 19 juli Sport Atletiek Accommodatie(s) straten van Parijs Deelnemers 14 atleten uit 5 landen Medailles 1  Michel Théato   Luxemburg 2  Émile Champion   Frankrijk 3  Ernst Fast   Zweden Vorige: 1896     Volgende: 1904 Portaal    Olympische Spelen Atletiek op deOlympische Zomerspelen 1900 Baanevenemente...

Type of motorcycle Honda VTR1000FManufacturerHondaAlso calledSuperHawk, FirestormProduction1997–2005ClassSport bikeEngine996 cc (60.8 cu in) l/c 90° V-twinBore / stroke98.0 mm × 66.0 mm (3.86 in × 2.60 in)Compression ratio9.4:1Top speed155 mph (249 km/h)[1]Power116 hp (87 kW) (rear wheel)[1]Torque64.9 lb⋅ft (88.0 N⋅m) (rear wheel)[2]Ignition typeComputer-controlled digital transistorize...

 

Spanish poet and essayist Federico Romero c. 1917 In this Spanish name, the first or paternal surname is Romero and the second or maternal family name is Saráchaga. Federico Romero Saráchaga (11 November 1886 – 30 June 1976)[1] was a Spanish poet and essayist. He is particularly known as a writer of libretti, primarily for zarzuelas. Although he was born in Oviedo and lived at times in both Zaragoza and Madrid, he considered himself a son of Spain's La Mancha region, ...

 

Róger Gómez Informações pessoais Nome completo Róger Gómez Tenorio Data de nascimento 7 de fevereiro de 1965 Local de nascimento Palmar Sur, Costa Rica Informações profissionais Posição Meia Clubes profissionais Anos Clubes Jogos e gol(o)s Herediano Seleção nacional 1990-1992  Costa Rica 19 (4) Róger Gómez Tenorio (Palmar Sur, 7 de fevereiro de 1965) é um ex-futebolista profissional e treinador costarriquenho, que atuava como meia. Carreira Róger Gómez fez parte do elenc...

Railway in Xinjiang, China Kashgar–Hotan railwayOverviewLocaleXinjiang, ChinaTerminiKashgarHotanContinues fromSouthern Xinjiang railwayContinues asHotan–Ruoqiang railway Route map The Kashgar–Hotan railway or Kahe railway (Chinese: 喀什至和田铁路; pinyin: Kāshí zhì Hétián Tiělù, abbreviated Chinese: 喀和铁路; pinyin: Kā-Hé Tiělù), is a single-track, non-electrified, railway in Xinjiang, China between Kashgar and Hotan. The railway is 488.27 km ...

 

Cuisine of early modern Europe (c. 1500–1800) Still life with a peacock pie, 1627, by Dutch artist Pieter Claesz, showing various dishes from the 17th century including roast meat, breads, nuts, wine, apples, dried fruits, along with an elaborate meat pie decorated like a peacock. While common in the warmer climates of Southern Europe, lemons would have been a relatively new introduction to the Netherlands, requiring growing in a orangery. The cuisine of early modern Europe (c. 1500–1800)...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!