Oxygen cycle refers to the movement of oxygen through the atmosphere (air), biosphere (plants and animals) and the lithosphere (the Earth’s crust). The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygenatoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth.[1] The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle.[2] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O2 production) or sink (O2 consumption).[1][2]
Oxygen is one of the most common elements on Earth and represents a large portion of each main reservoir. By far the largest reservoir of Earth's oxygen is within the silicate and oxideminerals of the crust and mantle (99.5% by weight).[6] The Earth's atmosphere, hydrosphere, and biosphere together hold less than 0.05% of the Earth's total mass of oxygen. Besides O2, additional oxygen atoms are present in various forms spread throughout the surface reservoirs in the molecules of biomass, H2O, CO2, HNO3, NO, NO2, CO, H2O2, O3, SO2, H2SO4, MgO, CaO, Al2O3, SiO2, and PO4.[7]
The biosphere is 22% oxygen by volume, present mainly as a component of organic molecules (CxHxNxOx) and water.
Hydrosphere
The hydrosphere is 33% oxygen by volume[8] present mainly as a component of water molecules, with dissolved molecules including free oxygen and carbolic acids (HxCO3).
The main source of atmospheric free oxygen is photosynthesis, which produces sugars and free oxygen from carbon dioxide and water:
Photosynthesizing organisms include the plant life of the land areas, as well as the phytoplankton of the oceans. The tiny marine cyanobacteriumProchlorococcus was discovered in 1986 and accounts for up to half of the photosynthesis of the open oceans.[15][16]
Abiotic production
An additional source of atmospheric free oxygen comes from photolysis, whereby high-energy ultraviolet radiation breaks down atmospheric water and nitrous oxide into component atoms. The free hydrogen and nitrogen atoms escape into space, leaving O2 in the atmosphere:
Biological consumption
The main way free oxygen is lost from the atmosphere is via respiration and decay, mechanisms in which animal life and bacteria consume oxygen and release carbon dioxide.
Capacities and fluxes
The following tables offer estimates of oxygen cycle reservoir capacities and fluxes.
These numbers are based primarily on estimates from (Walker, J. C. G.):[10] More recent research indicates that ocean life (marine primary production) is actually responsible for more than half the total oxygen production on Earth.[17][18]
Reservoir
Capacity (kg O2)
Flux in/out (kg O2 per year)
Residence time (years)
Atmosphere
1.4×1018
3×1014
4500
Biosphere
1.6×1016
3×1014
50
Lithosphere
2.9×1020
6×1011
500000000
Table 2: Annual gain and loss of atmospheric oxygen (Units of 1010 kg O2 per year)[1]
^ abcdKnoll AH, Canfield DE, Konhauser K (2012). "7". Fundamentals of geobiology. Chichester, West Sussex: John Wiley & Sons . pp. 93–104. ISBN978-1-118-28087-4. OCLC793103985.
^Keeling RF, Shertz SR (August 1992). "Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle". Nature. 358 (6389): 723–727. Bibcode:1992Natur.358..723K. doi:10.1038/358723a0. S2CID4311084.
^ abWalker JC (1980). "The Oxygen Cycle". The Natural Environment and the Biogeochemical Cycles. The Handbook of Environmental Chemistry. Springer Berlin Heidelberg. pp. 87–104. doi:10.1007/978-3-662-24940-6_5. ISBN9783662229880.