Index of dispersion

In probability theory and statistics, the index of dispersion,[1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical model.

It is defined as the ratio of the variance to the mean ,

It is also known as the Fano factor, though this term is sometimes reserved for windowed data (the mean and variance are computed over a subpopulation), where the index of dispersion is used in the special case where the window is infinite. Windowing data is frequently done: the VMR is frequently computed over various intervals in time or small regions in space, which may be called "windows", and the resulting statistic called the Fano factor.

It is only defined when the mean is non-zero, and is generally only used for positive statistics, such as count data or time between events, or where the underlying distribution is assumed to be the exponential distribution or Poisson distribution.

Terminology

In this context, the observed dataset may consist of the times of occurrence of predefined events, such as earthquakes in a given region over a given magnitude, or of the locations in geographical space of plants of a given species. Details of such occurrences are first converted into counts of the numbers of events or occurrences in each of a set of equal-sized time- or space-regions.

The above defines a dispersion index for counts.[2] A different definition applies for a dispersion index for intervals,[3] where the quantities treated are the lengths of the time-intervals between the events. Common usage is that "index of dispersion" means the dispersion index for counts.

Interpretation

Some distributions, most notably the Poisson distribution, have equal variance and mean, giving them a VMR = 1. The geometric distribution and the negative binomial distribution have VMR > 1, while the binomial distribution has VMR < 1, and the constant random variable has VMR = 0. This yields the following table:

Distribution VMR
constant random variable VMR = 0 not dispersed
binomial distribution 0 < VMR < 1 under-dispersed
Poisson distribution VMR = 1
negative binomial distribution VMR > 1 over-dispersed

This can be considered analogous to the classification of conic sections by eccentricity; see Cumulants of particular probability distributions for details.

The relevance of the index of dispersion is that it has a value of 1 when the probability distribution of the number of occurrences in an interval is a Poisson distribution. Thus the measure can be used to assess whether observed data can be modeled using a Poisson process. When the coefficient of dispersion is less than 1, a dataset is said to be "under-dispersed": this condition can relate to patterns of occurrence that are more regular than the randomness associated with a Poisson process. For instance, regular, periodic events will be under-dispersed. If the index of dispersion is larger than 1, a dataset is said to be over-dispersed.

A sample-based estimate of the dispersion index can be used to construct a formal statistical hypothesis test for the adequacy of the model that a series of counts follow a Poisson distribution.[4][5] In terms of the interval-counts, over-dispersion corresponds to there being more intervals with low counts and more intervals with high counts, compared to a Poisson distribution: in contrast, under-dispersion is characterised by there being more intervals having counts close to the mean count, compared to a Poisson distribution.

The VMR is also a good measure of the degree of randomness of a given phenomenon. For example, this technique is commonly used in currency management.

Example

For randomly diffusing particles (Brownian motion), the distribution of the number of particle inside a given volume is poissonian, i.e. VMR=1. Therefore, to assess if a given spatial pattern (assuming you have a way to measure it) is due purely to diffusion or if some particle-particle interaction is involved : divide the space into patches, Quadrats or Sample Units (SU), count the number of individuals in each patch or SU, and compute the VMR. VMRs significantly higher than 1 denote a clustered distribution, where random walk is not enough to smother the attractive inter-particle potential.

History

The first to discuss the use of a test to detect deviations from a Poisson or binomial distribution appears to have been Lexis in 1877. One of the tests he developed was the Lexis ratio.

This index was first used in botany by Clapham in 1936.

Hoel studied the first four moments of its distribution.[6] He found that the approximation to the χ2 statistic is reasonable if μ > 5.

Skewed distributions

For highly skewed distributions, it may be more appropriate to use a linear loss function, as opposed to a quadratic one. The analogous coefficient of dispersion in this case is the ratio of the average absolute deviation from the median to the median of the data,[7] or, in symbols:

where n is the sample size, m is the sample median and the sum taken over the whole sample. Iowa, New York and South Dakota use this linear coefficient of dispersion to estimate dues taxes.[8][9][10]

For a two-sample test in which the sample sizes are large, both samples have the same median, and differ in the dispersion around it, a confidence interval for the linear coefficient of dispersion is bounded inferiorly by

where tj is the mean absolute deviation of the jth sample and zα is the confidence interval length for a normal distribution of confidence α (e.g., for α = 0.05, zα = 1.96).[7]

See also

Similar ratios

Notes

  1. ^ Cox &Lewis (1966)
  2. ^ Cox & Lewis (1966), p72
  3. ^ Cox & Lewis (1966), p71
  4. ^ Cox & Lewis (1966), p158
  5. ^ Upton & Cook(2006), under index of dispersion
  6. ^ Hoel, P. G. (1943). "On Indices of Dispersion". Annals of Mathematical Statistics. 14 (2): 155–162. doi:10.1214/aoms/1177731457. JSTOR 2235818.
  7. ^ a b Bonett, DG; Seier, E (2006). "Confidence interval for a coefficient of dispersion in non-normal distributions". Biometrical Journal. 48 (1): 144–148. doi:10.1002/bimj.200410148. PMID 16544819. S2CID 33665632.
  8. ^ "Statistical Calculation Definitions for Mass Appraisal" (PDF). Iowa.gov. Archived from the original (PDF) on 11 November 2010. Median Ratio: The ratio located midway between the highest ratio and the lowest ratio when individual ratios for a class of realty are ranked in ascending or descending order. The median ratio is most frequently used to determine the level of assessment for a given class of real estate.
  9. ^ "Assessment equity in New York: Results from the 2010 market value survey". Archived from the original on 6 November 2012.
  10. ^ "Summary of the Assessment Process" (PDF). state.sd.us. South Dakota Department of Revenue - Property/Special Taxes Division. Archived from the original (PDF) on 10 May 2009.

References

  • Cox, D. R.; Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events. London: Methuen.
  • Upton, G.; Cook, I. (2006). Oxford Dictionary of Statistics (2nd ed.). Oxford University Press. ISBN 978-0-19-954145-4.

Read other articles:

Uitzicht op de eerste pyloon van de tempel Standbeeld van Horus De Tempel van Horus in Edfu is een van de best bewaarde tempels in Egypte. Hij werd opgericht door Ptolemaeus III in 237 v.Chr. en werd verder uitgebouwd door diens opvolgers. Uiteindelijk kwam de tempel gereed onder Ptolemaeus XII in 57 v.Chr.. Er waren echter ook al vroegere constructies: een oude tempel van Ramses III en de naos van de tempel werd opgericht tijdens het bewind van Nectanebo II. De tempel werd opgegraven door Au...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) مارك جيفرسون   معلومات شخصية تاريخ الميلاد سنة 1863[1][2]  تاريخ الوفاة 8 أغسطس 1949 (85–86 سنة)  مواطنة الولايات المتحدة  الحياة العملية المدرسة ا

 

Berikut ini adalah daftar air terjun di Indonesia. Daftar ini tidak lengkap dan hanya dapat dijadikan acuan sementara. Aceh SumatraUtara SumatraBarat Riau KepRiau Bengkulu Sumatera Selatan Lampung Kep. BangkaBelitung Jambi Banten Jakarta JawaBarat JawaTengah Yogyakarta JawaTimur KalimantanBarat KalimantanTengah KalimantanUtara KalimantanTimur KalimantanSelatan SulawesiBarat SulawesiTengah Gorontalo SulawesiUtara SulawesiSelatan SulawesiTenggara Bali Nusa TenggaraBarat Nusa TenggaraTimur Maluk...

Bolivian footballer José Bustamante Personal informationDate of birth 1907Place of birth La Paz, BoliviaHeight 1.64 m (5 ft 4+1⁄2 in)Position(s) ForwardSenior career*Years Team Apps (Gls) Club Litoral International career1926–1930 Bolivia 9 (2) *Club domestic league appearances and goals José Bustamante (born 1907, date of death unknown) was a Bolivian footballer who played as a forward for Club Litoral of La Paz. Bustamante is deceased.[1] Career During his c...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Empu Panuluh – berita · surat kabar · buku · cendekiawan · JSTOR Mpu Panuluh adalah pujangga (kawi) sastra Jawa yang hidup pada zaman pemerintahan Jayabaya dari Kerajaan Kadiri di Jawa, Indonesia. Ia ter...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أبريل 2019) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة ...

Pico de las Nieves Höhe 1949 msnm Lage Gran Canaria, Spanien Koordinaten 27° 57′ 43″ N, 15° 34′ 19″ W27.96207-15.571991949Koordinaten: 27° 57′ 43″ N, 15° 34′ 19″ W Pico de las Nieves (Kanarische Inseln) f6 Der Pico de las Nieves ist mit 1949 Metern über dem Meeresspiegel die zweithöchste Erhebung der spanischen Insel Gran Canaria. Der Gipfel befindet sich auf der Spitze eines erloschenen Vulkans im dünn b...

 

19.ª etapa do Giro d'Italia de 2022 Detalhes da corridaCorrida19، Giro d'Italia de 2022Tipo Etapa de média montanhaData27 maio 2022Distância178 kmPaíses Itália EslovéniaLocal de partidaMarano LagunareLocal de destinoSantuario della Beata Vergine di CastelmontePartiram151Chegaram150Velocidade média39,132 km/hDesnível3230 mResultados da etapa1. Koen Bouwman4 h 32 min 55 s(Jumbo-Visma)2. Mauro Schmid+ 0 s3. Alessandro Tonelli+ 3 sClassificação geral após a etapa Richard Carapaz81 h 1...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2021) تردد اللغة الألمانية في بولندا بناءً على التعداد البولندي...

American cable television division of Paramount Global Black Entertainment Television LLCTrade nameBET NetworksFormerlyBET Holdings Inc. (1983–2001)TypeSubsidiaryIndustryEntertainmentFounded1983; 40 years ago (1983)FounderRobert L. JohnsonHeadquartersWashington, D.C., U.S.Key people Scott M. Mills ProductsPay television, television productionBrands BET BET Her BET Hip-Hop BET Gospel BET Jams BET Soul VH1 BET+ OwnerParamount GlobalNumber of employees11,949ParentCBS Entertai...

 

United States historic placeRose Blumkin Performing Arts CenterU.S. National Register of Historic PlacesOmaha Landmark Show map of NebraskaShow map of the United StatesLocation2001 Farnam St.,Omaha, Nebraska 68102Coordinates41°15′25.89″N 95°56′32.78″W / 41.2571917°N 95.9424389°W / 41.2571917; -95.9424389Built1926[2]ArchitectJohn Eberson[2]Architectural styleClassical Revival, Exotic RevivalNRHP reference No.74001108[1]...

 

2020 song by Keith Urban SupermanSingle by Keith Urbanfrom the album The Speed of Now Part 1 Released17 July 2020 (2020-07-17)GenreCountry poppop rockLength2:50LabelHit RedCapitol NashvilleEMI AustraliaSongwriter(s)Keith UrbanCraig WisemanBen BergerRyan RabinRyan McMahonProducer(s)Keith UrbanCaptain CutsKeith Urban singles chronology Polaroid (2020) Superman (2020) Change Your Mind (2020) Music videoSuperman on YouTube Superman is a song recorded by Australian country artist Ke...

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (September 2014) (Learn how and when to remove this template message) Battle of KrosnoPart of Second Northern War / The DelugeDateDecember 7, 1655LocationKrosno, PolandResult Polish-Lithuanian victoryBelligerents Polish–Lithuanian Commonwealth Swedish EmpireCommanders and l...

 

2020 documentary television series World's Most WantedPromotional poster for the series.GenreDocumentaryCountry of originFranceOriginal languageEnglishNo. of seasons1No. of episodes5ProductionRunning time45-48 minutesOriginal releaseReleaseAugust 5, 2020 (2020-08-05) World's Most Wanted is a 2020 docuseries, exploring five of the world's most wanted criminals.[1] Episodes No.TitleDirected byOriginal release date1Ismael El Mayo Zambada Garcia: The Head of the Sinaloa Car...

 

Pico de la Dona Localización geográficaContinente EuropaÁrea protegida Parque Natural de las Cabeceras del Ter y del Freser y MantetCordillera PirineosCoordenadas 42°26′16″N 2°15′41″E / 42.43777778, 2.26138889Localización administrativaPaís España EspañaDivisión MantetSubdivisión GeronaLocalización Setcases (Ripollés)Mentet (Conflent)Características generalesAltitud 2702,5 m s. n. m.[1]​Prominencia 98MontañismoRuta Desde Vallter 2000[edit...

Lubuntu Lubuntu 23.04 «Lunar Lobster» Разработчик Сообщество Lubuntu Семейство ОС Linux Основана на Ubuntu Исходный код Открытое программное обеспечение Первый выпуск 30 октября 2008 Последняя версия 23.10 «Mantic Minotaur» (12 октября 2023)[1]22.04.3 LTS «Jammy Jellyfish» (10 августа 2023)[2] Поддерживаемые платформы x...

 

For the British comedy-drama film, see Limbo (2020 film). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Limbo 2021 film – news · newspapers · books · scholar · JSTOR (November 2017) (Learn how and when to remove this template message) 2021 filmLimboOfficial film posterChinese nameTraditional Chin...

 

American artist Rachel MasonBornLos Angeles, California, U.S.Known forPerformance, sculpture, music, film Rachel Mason is an American filmmaker whose work includes performance art, music, films and multimedia projects. Early life and education Mason was born in Los Angeles, California, to Karen and Barry Mason.[1] She has an older brother, Micah, and a younger brother, Josh.[1] Her mother was initially a journalist and her father worked as a special effects engineer in th...

Trolls 2 chuyển hướng đến đây. Đừng nhầm lẫn với Troll 2. 2020 animated film directed by Walt Dohrn Quỷ lùn tinh nghịch: Chuyến lưu diễn thế giới Áp phích chiếu rạp tại Việt NamĐạo diễnWalt DohrnSản xuấtGina ShayKịch bản Jonathan AibelGlenn Berger Elizabeth Tippet Maya Forbes Wallace Wolodarsky Cốt truyện Jonathan Aibel Glenn Berger Dựa trênBúp bê Trollcủa Thomas DamDiễn viên Anna Kendrick Justin Timberlake Rachel Bloo...

 

The Right HonourableThe Lord Montagu of BeaulieuKCIE CSI DLJohn Douglas-Scott-Montagu, 2nd Baron Montagu of Beaulieu ca. 1915-1920Member of the House of Lords Lord TemporalMasa jabatan5 November 1905 – 30 March 1929Hereditary PeeragePendahuluThe 1st Lord Montagu of BeaulieuPenggantiThe 3rd Lord Montagu of BeaulieuMember of Parliament for New ForestMasa jabatan26 July 1892 – 4 November 1905PendahuluFrancis ComptonPenggantiFrancis Compton Informasi pribadiLah...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!