hiperbola to taka krzywa stożkowa, dla której kąt między płaszczyzną tnącą a osią stożka jest mniejszy od kąta pomiędzy osią stożka a jego tworzącą.
Hiperbola nie jest spójna – ma dwie rozłączne części zwane gałęziami[1].
Równanie hiperboli
Jeżeli ogniska hiperboli mają współrzędne i to można ją opisać równaniem[1]:
gdzie jest połową odległości pomiędzy wierzchołkami hiperboli, natomiast jest połową odległości pomiędzy wierzchołkami urojonymi. Zachodzi również związek:
Mimośrodem hiperboli nazywa się stosunek odległości pomiędzy ogniskami a wierzchołkami rzeczywistymi[1]:
Od mimośrodu zależy kształt hiperboli.
Obierając na hiperboli dowolny punkt przez oznacza się odległość pomiędzy tym punktem a lewym ogniskiem, natomiast przez odległość pomiędzy punktem a prawym ogniskiem. Wtedy mają miejsce następujące związki:
dla prawej gałęzi:
dla lewej gałęzi:
Niech będzie odległością ustalonego punktu od lewej kierownicy, a odpowiednio – od prawej. Wówczas:
Powiązane linie proste
Hiperbola zawsze ma dwie asymptoty; przy powyższym równaniu hiperboli równania asymptot to[1]:
Kierownicami hiperboli nazywa się proste wyrażone równaniami
Odcinek, który przechodzi przez środek hiperboli, a jego końce na niej leżą nazywany jest średnicą hiperboli.
nazywa się hiperbolą sprzężoną do hiperboli wyjściowej, o równaniu podanym wyżej[1]. Hiperbole wzajemnie sprzężona mają wspólne asymptoty o równaniach podanych wyżej.