Природні сполуки бору відомі з раннього Середньовіччя. Забруднена бура (натрієвасіль тетраборної кислоти Na2B4O7·10Н2О) застосовувалася в ювелірній справі. Ще в 800-х роках нашої ери цю білу кристалічнуречовину застосовували як плавень — для пайкиметалів, особливо золота та срібла, та для додання легкоплавкості глазурі і склу. Під назвами тінкал, тінкар або аттінкар (Tinkal, Tinkar, Attinkar) бура ввозилася до Європи з Тибету. У Європі середньовічними алхіміками тінкал частіше називався латинським словом «боракс» (лат.Borax), що походить від арабського — «борак» (араб.بورق) та (або) перського — «борах» (перс.بوره) слів. Іноді терміном боракс або борак позначали різні речовини, наприклад соду (натрон). Руланд (1612 року) називав боракс «хрізоколою» — смолою, здатною «склеювати» золото та срібло. Лемері (1698) теж називав боракс «клеєм золота» (Auricolla, Chrisocolla, Gluten auri). Іноді боракс позначав щось на кшталт «вуздечки золота» (capistrum auri). В Александрійськійелліністичній та візантійській хімічній літературі терміни борах і борахон, а також в арабській (борак) їх взагалі позначали луг, наприклад bauraq arman (вірменський борак) або соду. Врешті-решт так стали називати лише буру.
Відкриття
У 1702 році Гомберг, прожарюючи буру із залізним купоросом, отримав «сіль», природний зразок якої виявили через 75 років — у 1777 року, яку стали називати «заспокійливою сіллю Гомберга» (Sal sedativum Hombergii). Пізніше вона отримала назву «борна кислота». Ця сіль знайшла застосування в медицині. 1747 року Барон синтезував буру за допомогою «заспокійливої солі» й натрону (соди). У «Хімічній номенклатурі» 1787 вже фігурувала назва boracique acid (борна кислота). А. Л. Лавуазьє в «Таблиці простих тіл» наводить термін лат.radical boracique. Склад бури та борної кислоти залишався невідомим до початку XIX століття.
Продукт, який вони отримали важко було назвати елементарним бором, оскільки вміст бору становив усього 60–70 %. 1892 року видатний французький хімік другої половини XIX століття Анрі Муассан запропонував магнієтермічний спосіб отримання бору за реакцією:
Коричневий порошок, що залишався після видалення окису магнію, Муассан вважав елементарним бором. Але згодом виявилося, що і цей бор — далеко не елементарний (бору в ньому не більше 90 %). І тому німецькийвчений-металург В. Кроль пробував вдосконалити спосіб Муассана, але й він не зміг підняти чистоту кінцевого продукту вище 93–94 %.
Крім усього іншого, бор попсував нерви багатьом видатним хімікам. Так у 1858 році Фрідріх Велер і А. Е. Сент-Клер Девіль встановили, що цей елемент існує у двох модифікаціях: кристалічній — алмазоподібній та аморфній — схожій на графіт. Ці положення швидко стали загальновизнаними та увійшли в монографії та підручники. Але 1876 року німецький хімік В. Гампе опублікував статтю, в якій стверджував, ніби алмазоподібний бор, отриманий тим же методом, що і у Велера та Сент-Клер Девіля, не є елементарним бором, а є боридом алюмінію складу AlB12. А ще через сім років та ж доля спіткала графітоподібний бор, формулу котрого (В48С2Al) встановив француз К. Жолі.
Результати робіт Гампе і Жолі, природно, викликали сумніви колег. І справа була не тільки в авторитеті Велера та Сент-Клер Девіля — видатних вчених та відмінних експериментаторів, а й у тому, що формули, отримані Гампе та Жолі, за загальновизнаними поняттями просто «не лізли в жодні ворота» (якщо «воротами» вважати класичні теоріївалентності і хімічного зв'язку).
Назва хімічного елементу з атомним номером 5 походить від арабського слова «борак» (араб.بورق) та/або перського — «борах» (перс.بوره)[12], які використовувалися для позначення бури[13], та відповідно за якими в 1808 році, після отримання елементу, французькі хіміки Л. Ж. Гей-Люссак та Л. Тенар запропонували назву «бор» (Воге), а англієць Г. Деві — «борацій» (Boracium), котра згодом у англійців була скорочена до «борон» (Boron) та збереглася в англійській мові і по тепер.
Природний бор представлений двома стабільними ізотопами. На частку легшого 10B у природній суміші припадає близько 19,9 %, решта (80,1 %) — важчий 11B[15][16]. Деякі вчені вважають, що відношення 11В:10В = 81:19 непостійне і що в надрах Землі відбувається частковий розподіл і перерозподіл ізотопів бору. На думку інших, всі відхилення в ізотопному складі — від того, що визначають його різними приладами і методами; але в роботах вчених і цієї групи, говориться, що бор, виділений з морської води, на 2 % важчий за бор, який отримано з мінералів. Існує, правда, і інше пояснення відхилень у ізотопному складі бору, отриманого з різних зразків. Суть його в тому, що під дією швидких протонів частина бору-10 перетворюється на берилій-7, а той своєю чергою (після серії ядерних перетворень) — в гелій-4.
Легший ізотоп бору 10В має дуже великий перетин захоплення теплових нейтронів (один з найбільших серед усіх ізотопів), а важчий 11В — один з найменших. Це означає, що матеріали на основі обох ізотопів елементу № 5 вельми цікаві для реакторобудування, як, втім, і для інших галузей атомної техніки.
Кристалічний бор переважно складається з чотирьох основних поліморфних форм: α, β, γ і Т. β-форма (β-тригональний бор (складається з ікосаедрів B12, які утворюють шари, об'єднані в нескінченну структуру)) найбільш стабільна, інші — метастабільні, однак швидкість перетворення за кімнатній температурі дуже мала, отже, всі ці форми можуть існувати за стандартних умов.
α-тригональний бор має комірки з дванадцяти атомів бору, структура яких складається з ікосаедрів B12, в котрих кожен атом бору має п'ять найближчих сусідів. Ізольовані ікосаедри не стабільні, тому α-бор не має молекулярної ґратки, а ікосаедри в ній пов'язані міцними ковалентними зв'язками. α-бор одержують:
β-тригональний бор має субкомірки, що містять по 105–108 атомів, або комірки, що об'єднують по 320 атомів. Багато атомів утворюють ікосаедри B12, але є й велика кількість неікосаедричних атомів. Одержують β-бор із розплаву.
На відміну від інших різновидів бору, де атоми рівноправні, кристалічна ґратка γ-бору утворена з ікосаедричних кластерів B12 та кластерів B2, котрі утворюють ортогональну гранецентровану кристалічну ґратку. Ці дві структурні складові чергуються, утворюючи кристалічну ґратку, схожу на ґратку хлориду натрію. Комірки цієї ґратки складаються з 28 атомів бору двох різновидів. В отриманій речовині атоми бору частково іонізовані, оскільки в кластерах B12 і B2 атоми перебувають у різному електронному стані, між цими станами відбувається нерівномірний перерозподіл електронної щільності (заряду). Атоми з кластерів B12 виступають у ролі аніонів, а атоми з кластерів B2 — у ролі катіонів. Тому ця речовина отримала назву «бор борид».
Стиснення бору вище 160 ГПа призводить до утворення наразі невідомої структури. Ця структурна трансформація відбувається при тиску, за якого теорія передбачає відокремлення ікосаедрів.
Напівметал бор є доволі інертною речовиною, нерозчинною у воді, і майже нерозчинною в кислотах (причому кристалічний бор менш активний, ніж аморфний). За кімнатної температури він взаємодіє тільки зі фтором (згоряючи в ньому):
Але з підвищенням температури активність бору зростає, при нагріванні він реагує й з іншими галогенами з утворенням тригалогенідів:
Ця властивість бору пояснюється дуже високою міцністю хімічних зв'язків в оксиді бору B2O3.
За відсутності окисників бор стійкий до дії розчинів лугів, втім, він повільно розчиняється в концентрованих розчинах з утворенням боратів. У кислотах бор за звичайної температури не розчиняється (навіть у киплячих фторидній та хлоридній кислотах), але концентрована нітратна кислота, а також гаряча сульфатна кислота та царська вода повільно окислюють його з утворенням борної кислоти H3BO3. Швидкість розчинення залежить від кристалічності, розміру часток, чистоти та температури. При взаємодії борної кислоти з лугами виникають солі не самої борної кислоти — борати (що містять аніон BO33−), а тетраборати, наприклад:
Елементарний бор з природної сировини отримують у кілька стадій. У промисловості спочатку з природних боратів сплавленням з содою отримують буру. Або розкладанням природних мінералів бору гарячою водою чи сірчаною кислотою (в залежності від їх розчинності) отримують борну кислоту H3BO3, з якої потім зневодненням (прожаренням при 580 °C) отримують оксид B2O3:
Після цього буру або оксид бору методом металотермії відновлюють активними металами (магнієм або натрієм) до вільного бору:
При розділенні ізотопів 10В та 11В бору використовують не елементарний бор, а одну з його сполук, найчастіше газоподібний при нормальних умовахтрифторид бору. Його (BF3) зріджують до рідкого стану при температурі близько -100 °C, та користуючись невеличкою різницею в рухливості молекул, в цій ситуації (молекули трифтористого бору, до складу яких входить бор-11, трохи більш рухливі ніж ті, в яких міститься бор-10), повільно, в ректифікаційних колонахвипарюють з рідкої суміші більш рухливий 11BF3 і таким чином залишаючи в ній менш рухливий 10BF3. Потім розділений за ізотопами трифтористий бор, якщо треба, відновлюють до елементарного бору хімічними методами.
Близько 50 % природних і штучних сполук бору використовують при виробництві скла (так звані боросилікатні типи скла — скла звичайного складу, в яких замінюють лужні компоненти у вихідній сировині на окис бору),
Бор в невеликих кількостях (частки %) вводять в деякі чорні та кольоровісплави для поліпшення їх механічних властивостей, корозієстійкості, жаростійкості. Вже присадка до сталі 0,001-0,003 % бору підвищує глибину її гарту, а отже, і її міцність (зазвичай в сталь вводять бор у вигляді феробору, тобто сплаву заліза з 10-20 % бору).
Бор краще за будь-який інший елемент очищає мідь від розчинених у ній газів, після легування бором властивості міді значно поліпшуються.
Крім додавання в сплави бор застосовується у методі борування — поверхневому (дифузійному) насиченні сталевих деталей бором (до глибини 0,1-0,5 мм), що підвищує їх механічні і антикорозійні властивості.
Чистий 10B і, особливо, його сполуки застосовують у вигляді матеріалів, що поглинають нейтрони, при виготовленні регулюючих стрижнів для ядерних реакторів, що уповільнюють чи припиняють реакції ділення, або захисних шарів для захисту від нейтронного випромінювання. Бо він характеризується дуже високим ефективним перетином захоплення теплових нейтронів (3×10-25 м²), а також важливо, що при цій ядерній реакції виникають тільки стабільні ядра. Наприклад борна кислота (B(OH)3) на основі 10B широко застосовується в атомній енергетиці як поглинач нейтронів в ядерних реакторах типу ВВЕР (PWR) на «теплових» («повільних») нейтронах. Завдяки своїм нейтронно-фізичним характеристикам і можливості розчинятися у воді застосування борної кислоти робить можливим плавне (не ступеневе) регулювання потужності ядерного реактора шляхом зміни її концентрації в теплоносії — так зване «борне регулювання».
Алмазоподібна модифікація нітриду бору (боразон) по твердості майже не поступається алмазу і застосовується як важливий абразивний і різцевий матеріал.
Карбіди бору (В4С і В13С2) через високу твердість, також хороші абразивні матеріали. Раніше вони широко використовувались для виготовлення свердел, вживаних зубними лікарями (звідси назва бормашина). Цим чорним блискучим кристалам не страшний розігрів. З підвищенням температури їх властивості майже не змінюються, а плавиться карбід бору лише при 2350 °C. Більш того, при температурі нижче 1000 °C ця речовина володіє винятковою хімічною стійкістю: в цих умовах на нього не діють ні кисень, ні хлор. Це означає, що інструмент з карбіду бору може працювати при високих температурах в окислювальних середовищах.
Сплави бор-вуглець-кремній використовуються як економічно ефективні шліфувальні матеріали, тому що володіють надвисокою твердістю і здатні замінити будь-який шліфувальний матеріал (окрім нітриду вуглецю, алмазу, нітриду бору по мікротвердості), а по поєднанню вартості та ефективності шліфування, перевершують всі відомі людству абразивні матеріали.
Як борні добрива найчастіше застосовують осаджені борати магнію, борно-датолітові добрива, що містить до 14,5 % водорозчинної борної кислоти, і суперфосфат з добавками сполук бору, переважно котрі вносять під багаторічні трави, льон, бавовник, овочеві, плодові, ягідні та багато інших культур, ефект від застосування котрих, у багато разів перевершує витрати на їх виробництво та внесення в ґрунт. Використовують їх тому що разом з врожаєм культурних рослин з кожного гектара ґрунту щорічно вибирається до 10 грам бору, а особливо активно забирають його коренеплоди і кормові трави, тому це природне зменшення і доводиться заповнювати, вносячи в ґрунт борні добрива.
Бор належить до числа хімічних елементів, які в дуже малих кількостях містяться в тканинахрослин і тварин (тисячні і десятитисячні частки % на суху масу). Для багатьох живих організмів, а особливо для рослин, бор — це життєво важливий елемент, необхідний для їхньої нормальної життєдіяльності, котрий разом з марганцем, міддю, молібденом і цинком входить до числа п'яти найважливіших мікроелементів.
Встановлено, що бор впливає на вуглеводний і білковий обмін в рослинах і тому при його нестачі сповільнюється: окисненняцукрів, амінування продуктів вуглеводного обміну, синтез клітинних білків, а також знижується вміст АТФ і порушується процес окиснюючого фосфорилювання, внаслідок чого енергія, що виділяється при диханні, не може бути використана для синтезу необхідних речовин (ферменти, для яких бор є необхідним елементом, поки що невідомі), що може призвести до хвороб.
Відомі багато хвороб, пов'язані з нестачею бору, наприклад: гниль сердечка цукрових буряків, чорна плямистість столового буряка, побуріння серцевини брукви і цвітної капусти, засихання верхівки льону, жовтяниця верхівки люцерни, бура плямистість абрикосів, обкоркування яблук та ін. При цьому найважливішими зовнішніми симптомами є відмирання точки росту головного стебла, а потім і пазушних бруньок. Також черешки та листя одночасно стають крихкими, квітки не з'являються та/або не утворюються плоди. При нестачі бору в ґрунті помітно зменшуються врожаї багатьох культур, причому особливо сильно це позначається на врожаї насіння. Для запобігання нестачі бору в с/г ґрунтах, в них вносять борні добрива.
У біогеохімічних провінціях з надлишком бору в ґрунті (наприклад, в Північно-Західному Казахстані) виникають морфологічні зміни і захворювання рослин, що викликаються накопиченням бору, — гігантизм, карликовість, порушення точок росту та інші. На ґрунтах з інтенсивним борним засоленням зустрічаються ділянки, позбавлені рослинності, «плішини», — одна з пошукових ознак родовищ бору.
↑Holcombe Jr., C. E.; Smith, D. D.; Lorc, J. D.; Duerlesen, W. K.; Carpenter; D. A. (October 1973). Physical-Chemical Properties of beta-Rhombohedral Boron. High Temp. Sci. 5 (5): 349—57.(англ.)
↑В природних зразках ізотопний вміст 10B може коливатись від 19.1 % до 20.3 %, тому в такому випадку вміст 11B теж коливається.
↑Szegedi, S.; Váradi, M.; Buczkó, Cs. M.; Várnagy, M.; Sztaricskai, T. (1990). Determination of boron in glass by neutron transmission method. Journal of Radioanalytical and Nuclear Chemistry Letters. 146 (3): 177. doi:10.1007/BF02165219.(англ.)
↑Talley, C. P.; LaPlaca, S.; Post, B. (1960). A new polymorph of boron. Acta Crystallogr. 13 (3): 271. doi:10.1107/S0365110X60000613.(англ.)
↑Solozhenko, V. L.; Kurakevych, O. O.; Oganov, A. R. (2008). On the hardness of a new boron phase, orthorhombic γ-B28. Journal of Superhard Materials. 30 (6): 428—429. doi:10.3103/S1063457608060117.(англ.)
↑ абв
Zarechnaya, E. Yu.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A. та ін. (2009). Superhard Semiconducting Optically Transparent High Pressure Phase of Boron. Phys. Rev. Lett. 102 (18): 185501. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID19518885.(англ.)
↑Nelmes, R. J.; Loveday, J. S.; Allan, D. R.; Hull, S.; Hamel, G.; Grima, P.; Hull, S. (1993). Neutron- and x-ray-diffraction measurements of the bulk modulus of boron. Phys. Rev. B. 47 (13): 7668. Bibcode:1993PhRvB..47.7668N. doi:10.1103/PhysRevB.47.7668.(англ.)
↑Madelung, O., ред. (1983). Landolt-Bornstein, New Series. Т. 17e. Berlin: Springer-Verlag.
↑Solozhenko, V. L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Mezouar, Mohamed; Mezouar, Mohamed (2009). Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5. Phys. Rev. Lett. 102 (1): 015506. Bibcode:2009PhRvL.102a5506S. doi:10.1103/PhysRevLett.102.015506. PMID19257210.
Глосарій термінів з хімії // Й.Опейда, О.Швайка. Ін-т фізико-органічної хімії та вуглехімії ім.. Л. М. Литвиненка НАН України, Донецький національний університет — Донецьк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0