H315 : Provoque une irritation cutanée H319 : Provoque une sévère irritation des yeux H335 : Peut irriter les voies respiratoires H372 : Risque avéré d'effets graves pour les organes (indiquer tous les organes affectés, s'ils sont connus) à la suite d'expositions répétées ou d'une exposition prolongée (indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger) H400 : Très toxique pour les organismes aquatiques H312+H332 : Nocif par contact cutané ou par inhalation. P273 : Éviter le rejet dans l’environnement. P314 : Consulter un médecin en cas de malaise. P302+P352 : En cas de contact avec la peau : laver abondamment à l’eau et au savon. P305+P351+P338 : En cas de contact avec les yeux : rincer avec précaution à l’eau pendant plusieurs minutes. Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer.
Il s'agit d'un élément relativement rare dans le milieu naturel, arrivant 47e dans l'écorce terrestre. Comme les autres halogènes, on le trouve essentiellement sous forme diatomique I2, correspondant au diiode, solide gris métallique aux vapeurs violettes appelé communément « iode » par abus de langage. Son nom vient du mot grec ancienἰώδης / iṓdēs, signifiant « couleur de la violette » (de ἴον / íon, « violette »). Il a été nommé ainsi par Gay-Lussac à la suite de la découverte en 1811 par le chimiste Bernard Courtois d'une substance alors inconnue issue d'algues destinées à la production de salpêtre lors des guerres napoléoniennes.
Chez l'animal et l'homme, l'excès[8] comme la carence en iode sont associés à des pathologies sévères[9]. Le manque d'iode inhibe la croissance et peut être à l'origine de l'apparition de « nodules » de la thyroïde. La carence grave peut causer divers troubles mentaux (crétinisme, surtout autrefois observé chez les populations éloignées des régions maritimes, notamment en montagne).
Les « comprimés d'iode » utilisés pour saturer la thyroïde en cas de contamination à l'iode 131 lors d'un accident nucléaire contiennent typiquement 65 ou 130mg d'iodure de potassium ; ils doivent être pris rapidement après l'accident. Certaines molécules (toxiques) freinent ou bloquent l'entrée de l'iode dans la thyroïde, dont les nitrates, perchlorates et thiocyanates qu'on dit « goitrogènes » (avec effets cumulatifs possibles[10]).
Histoire
L'iode a été découvert en 1811 par le chimiste et fabricant de salpêtre Bernard Courtois dans des cendres d'algues marines. Courtois suspecte la nature élémentaire de la substance qu'il découvre, mais il faudra attendre les conclusions de Gay-Lussac et Davy qui, quasi simultanément, confirment qu'il s'agit d'un nouvel élément. Il a été nommé ainsi par Gay-Lussac, dans une publication du [11], à partir du mot grec ancienἰοειδής / ioeidḗs (« violet ») en raison de la couleur de sa vapeur quand il est chauffé.
Propriétés physiques et chimiques
L'iode est peu soluble dans l'eau, mais ses sels (iodures, iodates) le sont bien davantage, et la concentration d'iode est plus élevée dans l'eau de mer que dans les roches, environ 50 contre 40 ppb[12].
L'iode adopte une grande variété d'états d'oxydation : −1, +1, +3, +5 et +7 essentiellement. En pratique, c'est l'état d'oxydation −1 qui est le plus significatif : c'est celui de l'ion iodure I−, présent dans les sels d'iode et dans les composés organo-iodés.
Parmi les minéraux contenant de l'iode, on trouve le nitronatrite, présent dans certaines roches sédimentaires comme le caliche du Chili. Certaines grandes algues (kelp) sont également riches en iode (majoritairement sous forme minérale, les ions iodures), avec des teneurs entre 0,03 et 5 % de poids sec (soit 1 000 à 150 000 fois la concentration de l'iode dans l'eau de mer)[12]. Elles ont en effet un équipement enzymatique (de type haloperoxydase(en)[13]) assurant d'une part la capture des iodures de l'eau de mer qui s'accumulent préférentiellement dans la paroi cellulaire exposée aux stress biotiques (épiphyte, défense contre les pathogènes) et abiotiques (exposition aux UVs, dessiccation lors des marées, stress oxydant, thermique et osmotique), d'autre part la biosynthèse de composés volatils iodés (phénomène de iodovolatilisation à l'origine de la condensation de l'eau des nuages et du fameux « air iodé »)[14] constituant, fort probablement, une stratégie développée par les algues pour se défendre contre ces stress[15]. Les bactéries du sol participent aussi au cycle biogéochimique[16] de l'iode[17], y compris en forêt[18].
Le diiode disponible dans le commerce contient généralement beaucoup d'impuretés, qui peuvent être éliminées par sublimation. Il peut également être préparé sous forme ultra-pure en faisant réagir de l'iodure de potassium KI avec du sulfate de cuivre CuSO4, qui commence par donner de l'iodure de cuivre(II) CuI2, lequel se décompose spontanément en Iodure de cuivre(I) CuI et diiode I2
D'une manière générale, il existe des ions polyiodure de formule générique Inm−, tels que les ions I5− ou I82−.
Oxydoréduction
Les iodures s'oxydent lentement sous l'effet de l'oxygène de l'atmosphère en libérant du diiode. C'est ce qui donne progressivement une teinte jaune au cours du vieillissement des sels d'iodure et des composés organoiodés[19]. C'est également ce qui provoque l'appauvrissement en iode des sels iodés lorsqu'ils sont exposés à l'air libre[20] ; certains sels sont enrichis en iode avec des ions iodate IO3− plutôt que des ions iodure I− pour éviter cette déperdition d'iode avec le temps.
L'iode forme une solution d'un bleu intense lorsqu'il est dissous dans l'acide sulfurique fumant (oléum à 65 %). Cette couleur bleue est due au cation I2+ résultant de l'oxydation par le trioxyde de soufre SO3[23] :
Le cation I2+ est également formé lors de l'oxydation du diiode par le pentafluorure d'antimoine SbF5 ou par le pentafluorure de tantale(en) TaF5 en formant des cristaux d'un bleu profond de I2+Sb2F11− ou de I2+Ta2F11− respectivement. Les solutions de ces sels deviennent rouges en dessous de −60 °C en raison de la formation du cation I42+ :
2 I2+ I42+.
En milieu plus basique, I42+ se dismute en I3+ et un composé d'iode(III). Un excès d'iode réagit alors avec I3+ pour former le cation I5+ (vert) puis I153+ (noir).
Cette réaction libère 314kJ par mole d'aluminium, valeur proche de celle de la thermite (de l'ordre de 425kJ·mol-1). Cette réaction démarre spontanément et n'est pas confinée en volume en raison du nuage d'iode provoqué par les températures élevées.
Les sels métalliques alcalins sont des solides incolores très solubles dans l'eau, et l'iodure de potassium KI est une source commode d'ions iodure I−, moins hygroscopique que l'iodure de sodium NaI et donc plus facile à manipuler. Ces deux sels sont principalement utilisés pour produire du sel iodé destiné à prévenir la carence en iode auprès des populations distantes des régions côtières. L'iodure de sodium est particulièrement utilisé pour réaliser la réaction de Finkelstein car il est plus soluble dans l'acétone que l'iodure de potassium ; dans cette réaction, un chlorure d'alkyle est converti en iodure d'alkyle, réaction soutenue par le fait que le chlorure de sodium produit au cours de la réaction est insoluble dans l'acétone :
L'iodométhane et un petit nombre d'autres composés organoiodés — tels que le diiodométhane CH2I2 (iodure de méthylène), le triiodométhane CHI3 (iodoforme) et le tétraiodométhane CI4 (tétraiodure de carbone) — jouent un rôle dans des réactions de synthèse industrielles en raison de la facilité avec laquelle la liaison C–I se forme et se défait : c'est la plus faible des liaisons carbone–halogène, l'intensité de ces dernières étant rangée dans l'ordre de l'électronégativité des halogènes, c'est-à-dire fluor > chlore > brome > iode, et dans l'ordre inverse de leur rayon atomique et de la longueur de la liaison C–X (où X représente un halogène quelconque) ; la faiblesse de cette liaison donne souvent une teinte jaune aux composés organoiodés en raison d'impuretés de diiode I2.
Ces composés sont très denses, en raison de l'atome d'iode : la masse volumique de l'iodométhane à 20 °C est de 2,28 g/cm3, celle du diiodométhane est de 3,325 g/cm3.
Presque tous les composés organoiodés présentent un ion iodure lié à un atome de carbone et sont généralement rangés parmi les iodures. De rares organoiodés présentent néanmoins de l'iode dans un état d'oxydation plus élevé (III ou V)[26]. Ils sont appelés periodane ou plus souvent, en raison du terme anglais, periodinane et sont généralement des oxydants doux comme l'acide 2-iodoxybenzoïque (IBX).
Des composés organopolyiodés peuvent être utilisés comme agents de contraste en fluoroscopie, une technique d'imagerie médicale, en tirant parti de l'absorption des rayons X par le noyau des atomes d'iode en raison de leur masse atomique élevée. La plupart de ces agents sont des dérivés du 1,3,5-triiodobenzène et contiennent près de 50 % d'iode en masse ; l'ioversol(en) est un exemple de tels agents de contraste.
L'iodure de potassium naturel, à base d'iode 127 stable, peut être utilisé sous diverses formes (en comprimés pour effet progressif, en solution saturée dite « SSKI » en cas d'urgence) pour saturer temporairement la capacité d'absorption d'iode de la thyroïde afin de bloquer pendant quelques heures la fixation éventuelle d'iode 131 dans cette glande ; c'est notamment le cas pour se prémunir des conséquences des retombées d'iode radioactif d'une bombe A ou d'un accident nucléaire.
Les doses d'iodure de potassium recommandées par l'OMS en cas d'émission d'iode radioactif ne dépassent pas 130mg/jour au-dessus de l'âge de 12 ans et 65mg/jour au-dessus de 3 ans[27] ; passé l'âge de 40 ans en revanche, l'utilisation préventive de comprimés d'iodure de potassium n'est pas recommandée — elle ne l'est qu'en cas de contamination effective justifiant la protection de la thyroïde — car les effets indésirables de l'iodure de potassium augmentent avec l'âge et peuvent dépasser les effets protecteurs de ce composé[27].
La protection offerte par les comprimés d'iodure de potassium est maximum environ deux heures après la prise et cesse après une journée.
En Belgique, le Conseil supérieur de la santé tire les premières leçons de l'accident de Fukushima concernant les plans d'urgence nucléaire belges dans son avis de 2015 : « Accidents nucléaires, environnement et santé à l'ère post-Fukushima. Partim : Protection de la thyroïde ». En cas d'accident nucléaire, le Conseil recommande l'administration d'iode stable (sous forme d'iodure de potassium) dans les groupes à risque (enfants, femmes enceintes et femmes allaitantes) dans un rayon allant jusqu'à 100 km des installations nucléaires ; dans un rayon de 20 km, la recommandation d'administrer de l'iode à toutes les personnes, sauf contre-indication, reste d'application. Les réactions allergiques à l'iode sont rares et les antécédents de réactions allergiques à des produits de contraste iodés ou après application locale de povidone iodée ne constituent pas des contre-indications. Chez les patients de plus de 40 ans, il convient d'être attentif à l'existence éventuelle de pathologies thyroïdiennes pouvant contre-indiquer l'administration d'une dose élevée d'iode[28]. Le Centre belge d'information pharmacothérapeutique (CBIP) complète cet avis avec des recommandations pratiques pour la prise d'iode et confirme l'importance d'un avis médical pour les personnes de plus de 40 ans avec des problèmes de thyroïde. La Belgique recommande l'utilisation des comprimés de 65 mg d'iodure de potassium (équivalent à 50 mg d'iode. La posologie recommandée est la suivante : jusqu'à 1 mois : ¼ comprimé ; de 1 à 36 mois : ½ comprimé ; de 3 à 12 ans : 1 comprimé ; de 13 à 40 ans : 2 comprimés en 1 prise ; chez les femmes enceintes ou allaitantes (même chez les femmes âgées de plus de 40 ans) : 2 comprimés en 1 prise[29].
Gisements miniers et production
Seuls deux types de sources naturelles d'iode sont exploités commercialement : le caliche au Chili, et les saumures riches en iode des champs pétrolifères et gaziers essentiellement au Japon et aux États-Unis. Les réserves mondiales d'iode étaient estimées à 15 millions de tonnes fin 2010[30], dont 9 millions au Chili, 5 millions au Japon et 250 000 aux États-Unis.
Grâce à cette ressource, le Chili était le principal producteur d'iode en 2010 — environ 18 000t, soit 62 % de la production mondiale publiée[30].
Les saumures constituent l'autre source primaire d'iode exploitée commercialement. Les champs de gaz naturel de Minami à l'est de Tokyo au Japon et du bassin d'Anadarko dans l'Oklahoma aux États-Unis en sont les deux principales sources. Ces saumures ont une température de plus de 60 °C en raison de la profondeur de ces sources. Elles sont d'abord purifiées et traitées à l'acide sulfurique H2SO4, et l'iodure d'hydrogène HI résultant est alors oxydé en diiode I2 par action de chlore Cl2, avant d'être récupéré à travers une tour d'absorption contenant du dioxyde de soufre SO2 :
La production d'iode américaine est tenue confidentielle par l'USGS, tandis que celle du Japon était d'environ 9 800t en 2010, soit près de 34 % de la production mondiale publiée[30]. Le prix de l'iode industriel a très fortement augmenté en 2011 d'environ 40 %.
La concentration d'iode dans l'eau de mer n'est pas suffisante pour que l'extraction de cet élément à partir de cette source soit rentable. Les grandes algues marines (kelp) ont été exploitées au XVIIIe siècle et au XIXe siècle — c'est d'ailleurs à partir de telles algues que l'iode a été isolé pour la première fois — mais n'est plus viable économiquement[32].
Utilisations
Histoire
La médecine chinoise traditionnelle avait déjà constaté que la poudre issue d'éponge marine brûlée (riche en iode) permet de lutter contre les goitres, bien avant que l'on ait montré en Europe (en 1830) que l'iode avait cet effet. Cette dernière découverte fut d'ailleurs suivie d'une série d'intoxications dues à un usage trop fréquent et/ou trop enthousiaste de l'iode (au milieu du XIXe siècle F Rilliet comprenait que ces intoxications étaient induites par l'iode « administré à petites doses longtemps continuées »[33] mais ces intoxications avaient été assez graves pour discréditer puis faire abandonner la prophylaxie à l'iodure durant plusieurs décennies… Jusqu'à ce qu'Eugen Baumann montre (en 1896) que la thyroïde contient normalement un composé organique de l'iode. Cette découverte relance le traitement et la prévention du goitre par l'iode, après qu'on ait compris qu'il s'agit d'un oligoélément qui ne doit être absorbé qu'en petites quantités. Le médecin suisse Otto Bayard est le premier à mélanger de l'iode avec du sel de cuisine pour lutter contre les carences chez les populations montagnardes ; son action est reprise par la Suisse puis par d'autres pays, démarrant la prophylaxie par l'iode. Durant la Première Guerre mondiale, en 1917, le sel iodé distribué au goitreux et dans des régions goitreuses s'est révélé efficace pour prévenir le goitre endémique et le risque de crétinisme[34].
Lampe à incandescence qui contient un gaz inerte et de l'iode ou de l'iodure de méthyle. À cause de sa température très élevée, une partie du filament en tungstène s'évapore et un dépôt métallique se forme sur la paroi de l'ampoule. Celui-ci réagit alors avec l'iode, pour former des iodures métalliques volatils. Ces composés sont détruits au contact du filament, permettant ainsi le retour du métal à sa source. Ce qui permet d'augmenter la durée de vie et d'augmenter la température de fonctionnement.
Un filament à température plus élevée donne une lumière plus blanche (avantage) mais émet une proportion importante d'ultraviolet (inconvénient). Afin de résister aux hautes températures, l'ampoule est en verre de silice souvent du quartz fondu, transparent aux UV. Un écran en verre ordinaire (qui filtre les UV) est indispensable autour de l'ampoule « halogène » pour éviter que le sodium de la sueur des doigts catalyse une recristallisation de la silice ce qui détruirait l'ampoule.
Examen aux rayons X : L'iode possède une forte opacité aux rayons X. Il est utilisé en tant qu'agent de contraste (sous une forme injectable). Des molécules organoiodées sont utilisées en imagerie médicale pour opacifier des organes (reins, artères, veines, vésicule biliaire, cerveau, etc.).
Les principales sociétés pharmaceutiques produisant des agents de contraste sont Guerbet (France), Schering (Allemagne), Squibb (USA), Bracco (Italie).
Traitement anticancéreux ; contre le cancer de la thyroïde par radiothérapie : l'iode 131 radioactif se fixe préférentiellement sur la thyroïde malade et les cellules métastatiques en les détruisant, mais il expose les autres cellules à un rayonnement interne et il a récemment été remis en cause pour le traitement des cancers de petite taille, car il augmente le risque de développer un second cancer à la suite du traitement[35].
L'essentiel de l'iode est d'origine marine. Du fait des précipitations, il se retrouve de manière inégale dans les terres, et donc, dans les différentes plantes et animaux consommées[37]. La source de l'iode alimentaire dans les pays européens et aux États-Unis se trouve principalement dans les poissons, les fruits de mer, les algues, les kelpes[37].
L'iode est absorbé sous forme d'ions au niveau de l'estomac et du duodénum. Il est stocké principalement dans la thyroïde et excrété dans les urines. On a aussi montré qu'« il existe une interrelation très étroite entre le métabolisme du sélénium et celui de l'iode »[38].
L'iode est un oligo-élément essentiel à la vie humaine. Les besoins journaliers chez l'adulte sont d'environ 150µg, davantage chez la femme enceinte (de 200 à 290μg). Il sert exclusivement à fabriquer les hormones thyroïdiennes, dont la thyroxine. Il est souvent ajouté au sel de cuisine (sel iodé), parfois au lait (au Royaume-Uni notamment) pour éviter toute carence (voir aussi le tableau des aliments riches en iode). L'absorption quotidienne se situe entre 0,05 et 0,1mg[39]. Pour toute une vie les besoins en iode sont d'environ 2 à 4grammes[40], à peine l'équivalent d'une cuillère à café. C'est assez faible mais cela reste redoutable car notre organisme ne sait pas stocker cet oligo-élément de manière prolongée[41].
Son absence provoque une turgescence de la glande thyroïdienne, qui se manifeste par un goitre. La carence en iode entraine un retard de croissance et divers troubles mentaux.
Des régions montagnardes peuvent être pauvres en iode en raison du lessivage des sols par les anciens glaciers[42]. Les cas de difformité et de nanisme étaient donc fréquents parmi les populations paysannes alpines. Dans les Alpes, la population isolée des vallées était beaucoup plus souvent atteinte de troubles liés à la carence en iode. La première définition du « crétin goitreux » est donnée dans l'encyclopédie raisonnée des sciences, des arts et des métiers (1754) de Diderot. L'expression « crétin des Alpes » est usuelle. Le crétinisme est une forme de débilité mentale et de dégénérescence physique en rapport avec une insuffisance thyroïdienne.
L'iode est indispensable pour la maturation du système nerveux du fœtus. La carence peut avoir un retentissement sur le développement cérébral.
En 2007, près de deux milliards de personnes, dont un tiers d'âge scolaire, ont un déficit en iode[43], ce qui en fait un des problèmes majeurs de santé publique. L'une des façons de lutter contre cela est l'ajout d'iode dans le sel de consommation.
En Belgique, le Conseil Supérieur de la Santé a publié en 2014 un avis « Stratégies visant à augmenter l'apport iodé en Belgique, évaluation et recommandations » dans lequel on apprend que le statut iodé de la population belge est sous contrôle. Seules les femmes qui désirent un enfant ou qui sont enceintes devraient prendre un complément alimentaire iodé et/ou utiliser un sel de cuisine iodé à teneur modérée en iode (10 à 15mg/kg)[44]
La perte en iode durant la cuisson varie suivant le type de cuisson et le temps de cuisson[45].
Ainsi concernant le sel de table enrichi en iode, il est recommandé de l'ajouter après la cuisson et non pendant la cuisson[45].
Une étude a mis en évidence qu'une fois que la boite de sel a été ouverte, au bout de 20 à 40 jours, la moitié de l'iode contenue dans le sel a disparu par sublimation[47],[48],[49].
L'iode radioactif 131I peut être rejeté accidentellement par un réacteur nucléaire. Il est assimilé avec la nourriture ou l'eau contaminée, et se fixe dans la glande thyroïde. L'ingestion de comprimés d'iodure de potassium (130mg par jour pour un adulte, 65mg pour un enfant de moins de 12 ans) sature la thyroïde et évite la fixation d'iode dans l'organisme pendant l'exposition à l'iode radioactif : cette consigne de sécurité est surtout valable pour les enfants et les femmes enceintes ou allaitant, les risques de cancers thyroïdiens étant majeurs ; au-delà de 40 ans, la prise d'iodure de potassium devient discutable, la balance bénéfices/risques n'étant plus aussi favorable[27].
En France, lors de la dernière campagne de distribution préventive, environ 52 % des particuliers situés dans un rayon de 10km autour des centrales nucléaires se sont déplacés en pharmacie pour retirer leurs comprimés d'iodure de potassium[53].
Toxicité et risques en cas d'excès
De nombreux composés chimiques contenant de l'iode sont utilisés en médecine et/ou en milieu professionnel (industrie, chimie, médecine)[54]. La pénétration au sein de l'organisme peut se faire par les voies respiratoire, cutanée ou digestive[54]. L'iode (sauf à faible dose) est nocif par inhalation, par ingestion et à haute dose par contact avec la peau[55].
La surcharge iodée iatrogène (c'est-à-dire induite par de l'iode médicamenteux) est le plus souvent due à un accident médical lié[56] à un usage médicamenteux inadapté.
Un abus de compléments alimentaires iodés peut aussi être en cause[57].
Certains environnements professionnels sont aussi source de contamination interne (Ex : fabrication d'écrans de gamma-caméras à partir de cristaux d'iodures de sodium et de césium, notamment au stade de l'usinage et du polissage en salle sèche[54].
La surcharge en iode peut alors occasionner (ou simplement révéler) des altérations du fonctionnement thyroïdien (hypo- ou hyperthyroïdie)[58] mais peut aussi avoir des effets toxiques chez certains patients, pouvant par exemple résulter de l'usage de désinfectant riche en iode (bétadine par exemple) chez les grands brûlés, l'iode passant en trop grande quantité dans le sang et la lymphe du patient, en pouvant induire une acidose métabolique grave[59] ou plus rarement une insuffisance rénale aiguë (avec nécrose tubulaire aiguë) chez des patients abondamment traités par un produit iodé au niveau des muqueuses[60]. La littérature cite aussi des cas d'intoxications massives induites par des irrigations profondes et prolongées de plaies par de la bétadine[61].
Pour savoir à partir de quand il y a excès ou anomalie, il faut connaitre la teneur « normale » en iode des cheveux, ongles, de l'urine (iodémie), du sang…. Ces paramètres commencent à être mieux connus et s'inscrivent notamment dans le concept de « profil métallique » (moyen ou individuel)[62]
Précautions à prendre
L'iode étant un oligoélément thyroïdien actif à très faible dose, un risque d'intoxication par l'iode (et d'hypothyroïdie secondaire) justifie de proscrire formellement l'utilisation de désinfectants iodés chez les personnes les plus vulnérables aux surdoses que sont les nouveau-nés[63] et a fortiori les prématurés, ainsi que chez la femme enceinte et allaitante[64].
Allergie à l'iode
Certaines personnes peuvent être allergiques à des produits contenant de l'iode, comme au produit contrastant injecté pour des examens de radiologie ou encore certains poissons, fruits de mer, les algues, les kelpes. Il s'est donc répandu l'idée que l'on pouvait être allergique à l'iode. Ceci est en réalité impossible : c'est à des composés de l'iode que l'on peut être allergique[65], mais jamais à l'élément, qui entre notamment dans la composition de certaines hormones thyroïdiennes.
Les produits susceptibles d'induire une allergie à l'iode contiennent tous de l'iode, mais ce sont des substances différentes qui interviennent dans le cas de l'allergie. Pour la bétadine, c'est la povidone iodée (le véhicule de l'iode) qui est responsable. Pour les produits de contraste iodés, l'osmolalité est mise en cause, et pour les produits de la mer (poissons, crustacés, algues, kelpes), ce sont des protéinesmusculaires. Il n'existe donc aucune réaction croisée ni de facteurs de risques. De plus, il n'y a aucune allergie rapportée dans le cas d'utilisation de solutions alcoolique ou aqueuse d'iode, telles la solution de Lugol, la teinture d'iode, etc.
↑ abcd et e(en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN978-1-420-09084-0)
↑(en) Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán et Santiago Alvarez, « Covalent radii revisited », Dalton Transactions, , p. 2832 - 2838 (DOI10.1039/b801115j)
↑Paul Arnaud, Brigitte Jamart, Jacques Bodiguel, Nicolas Brosse, Chimie Organique 1er cycle/Licence, PCEM, Pharmacie, Cours, QCM et applications, Dunod, , 710 p., Broché (ISBN2100070355)
↑(en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC, , 89e éd., p. 10-203
↑(en) T.A. Czuppon et al., Kirk-Othmer encyclopedia of chemical technology 4th ed. : Ammonia, vol. 2, John Wiley & Sons.
↑Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
↑ a et bEntrée « Iodine » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 21 août 2018 (JavaScript nécessaire)
↑Chez l'homme adulte, on parle d'excès à partir d'une excrétion d'iode d'environ 800 mg/24 heures.
↑P. Laurberg, I. Bülow Pedersen, N. Knudsen, L. Ovesen, and S. Andersen, « Environmental Iodine Intake Affects the Type of Nonmalignant Thyroid Disease », Thyroid, 2001, p. 457-469. DOI : 10.1089/105072501300176417 (résumé).
↑M. Tonacchera, A. Pinchera, A. Dimida, E. Ferrarini, P. Agretti, P. Vitti, F. Santini, K. Crump & J. Gibbs. « Relative potencies and additivity of perchlorate, thiocyanate, nitrate and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter ». Thyroid, 2004, p. 1012–1019 (résumé).
↑Joseph Louis Gay-Lussac, Mémoire sur l'iode, Annales de Chimie, 1814, tome 91, p. 5-160.
↑ a et b(en) E. F. Verhaeghe, A. Fraysse, J.-L. Guerquin-Kern, T.-D. Wu, G. Devès, C. Mioskowski, C. Leblanc, R. Ortega, Y. Ambroise et P. Potin, « Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation », Journal of Biological Inorganic Chemistry, vol. 13, , p. 257–269.
↑(en) FC. Küpper, N. Schweigert, E. Ar Gall, J. M. Legendre, H. Vilter et B. Kloareg, « Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide », Planta, vol. 207, , p. 221-232.
↑Dans l'atmosphère, les composés volatils iodés sont progressivement transformés par photolyse en radicaux iodés qui réagissent avec l'ozone pour former des particules iodées. En réalité, cet « air iodé » ne vient pas de ces particules iodées micronisées dans les gouttelettes car elles n'ont pas d'odeur. Le parfum de l'air iodé provient certainement des composés organiques volatils (dont les composés volatils iodés) émis par les algues et dispersés par le vent et les embruns. Cf. Catherine Leblanc et Philippe Potin, « L'air iodé du bord de mer : de la défense des algues à la formation des nuages », Biofutur, vol. 29, no 308, , p. 51.
↑(en) G. Malin, F. C. Küpper, L. J. Carpenter, A. Baker, W. Broadgate, B. Kloareg et P. S. Liss, « Trace gas production by seaweeds: defense, oxidative stress, signalling and atmospheric significance », Journal of Phycology, vol. 37, no 2, , p. 32-33 (DOI10.1111/j.1529-8817.2001.jpy37303-82.x).
↑Global Iodine Biogeochemical Cycle, tiré de Chris M. Yeager, « Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency », Advances in Applied Microbiology, vol. 101, 2017, p. 83-136.
↑(en) Muramatsu Y, Yoshida S, Fehn U, Amachi S, Ohmomo Y, « Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment », J Environ Radioact, vol. 74, nos 1-3, , p. 221-232 (DOI10.1016/j.jenvrad.2004.01.011).
↑ a et b(en) Phyllis A. Lyday et Tatsuo Kaiho, « Iodine and Iodine Compounds », dans Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, (ISBN978-3-527-30673-2, DOI10.1002/14356007.a14_381.pub2), p. 1–13.
↑(en) Katarzyna Waszkowiak et Krystyna Szymandera-Buszka, « Effect of storage conditions on potassium iodide stability in iodised table salt and collagen preparations », International Journal of Food Science & Technology, vol. 43, no 5, , p. 895–899 (ISSN0950-5423 et 1365-2621, DOI10.1111/j.1365-2621.2007.01538.x, lire en ligne, consulté le ).
↑Frank Albert Cotton et Geoffrey Wilkinson, Advanced inorganic chemistry: a comprehensive text, J. Wiley & sons, (ISBN978-0-471-84997-1).
↑(en) Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman, « Inorganic chemistry ». Academic Press, 2001, p. 419–420. (ISBN0123526515).
↑Linus Pauling, General chemistry, Dover Publ, coll. « Dover books on chemistry », (ISBN978-0-486-65622-9).
↑(en) N. Bell, L. Hsu, D. J. Jacob, M. G. Schultz, D. R. Blake, J. H. Butler, D. B. King, J. M. Lobert et E. Maier-Reimer, « Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models », Journal of Geophysical Research, vol. 107, no D17, , p. 4340 (DOI10.1029/2001JD001151)
↑(en) Alex G. Fallis, Pierre E. Tessier, « 2-Iodoxybenzoic acid (IBX)1 ». dans Encyclopedia of Reagents for Organic Synthesis, John Wiley, 2003. DOI10.1002/047084289X.rn00221.
↑(en) Jessica Elzea Kogel, Nikhil C. Trivedi, James M. Barker, Stanley T. Krukowski (2006). « Industrial Minerals & Rocks: Commodities, Markets, and Uses », p. 541–552, 2006. (ISBN9780873352338).
↑Rilliet F (1858). Quelques mots sur l'intoxication produite par l'iode administré à petites doses longtemps continuées, par le Dr F. Rilliet... L. Martinet.
↑G. Goindi, M. G. Karmarkar, U. Kapil et J. Jagannathan, « Estimation of losses of iodine during different cooking procedures », Asia Pacific Journal of Clinical Nutrition, vol. 4, no 2, , p. 225–227 (ISSN0964-7058, PMID24394330, lire en ligne, consulté le )
↑(en) Lynne Farrow, The Iodine Crisis : What You Don't Know about Iodine Can Wreck Your Life, Devon Press, , 257 p. (ISBN978-0-9860320-0-4, lire en ligne)
« page 192 - Dasgupta et al. report it takes between 20 and 40 days for an opened container of iodized salt to lose half of its iodine. »
↑ a et bPantea Nazeri, Mohammad Ali Norouzian, Parvin Mirmiran et Mehdi Hedayati, « Heating Process in Pasteurization and not in Sterilization Decreases the Iodine Concentration of Milk », International Journal of Endocrinology and Metabolism, vol. 13, no 4, (ISSN1726-913X, PMID26587031, PMCIDPMC4648127, DOI10.5812/ijem.27995, lire en ligne, consulté le ) :
« The present study is the first to investigate this effect; and contrary to our predictions, heating during sterilization did not decrease the iodine concentration in the milk. »
↑Pantea Nazeri, Mohammad Ali Norouzian, Parvin Mirmiran et Mehdi Hedayati, « Heating Process in Pasteurization and not in Sterilization Decreases the Iodine Concentration of Milk », International Journal of Endocrinology and Metabolism, vol. 13, no 4, (ISSN1726-913X, PMID26587031, PMCIDPMC4648127, DOI10.5812/ijem.27995, lire en ligne, consulté le )
↑(fr) [1] 2e phase de distribution de comprimés d’iode pour les entreprises et collectivités – Mobilisez-vous !
↑ ab et cGuével E, Madani R, Conso F, Causse E & Choudat D (2004) « Dysfonctionnement thyroïdien et surcharge iodée professionnelle ». Archives des Maladies Professionnelles et de l'Environnement, 65(5), 438-441.
↑Hassani H (2012) Accidents médicaux liés à l’utilisation des produits de contraste iodés en radiodiagnostic: éléments pour la détermination de la responsabilité médicale du radiologue. La Revue de Médecine Légale, 3(3), 103-114.
↑Testud, F., & Du Boullay, H. (2006). Compléments alimentaires à base d'algues marines et dysthyroïdie: une possible relation?. La Revue de médecine interne, 27(5), 429-430
↑Wemeau J.L (2002) Hypothyroïdies liées aux surcharges iodées : Les surcharges iodées. La Presse médicale, 31(35), 1670-1675
↑Pietsch J & Meakins J.(1976). Complications of povidone-iodine absorption in topically treated burn patients. The Lancet, 307(7954), 280-282 | résumé
↑Béji S, Kaaroud H, Moussa F.B, Abderrahim E, Zghidi S, Hamida F.B,... & Kheder A (2006) Insuffisance rénale aiguë secondaire à la povidone iodée. La Presse Médicale, 35(1), 61-63 | résumé.
↑Lemaire-Hurtel A.S, Bodeau S, Bennis Y, Andrejak M, Lobjoie E, Chatelain D & Gaulier J.M (2014) Intoxication aiguë à la bétadine alcoolique : à propos d'un cas. Toxicologie Analytique et Clinique, 26(2), S27-S28.
↑Lahmiti, S., El Fakiri, K., & Aboussad, A. (2010). Les antiseptiques en néonatologie: l’héritage des anciens à la lumière du jour. Archives de pédiatrie, 17(1), 91-96 | résumé
↑Beaufrere, B., Bresson, J. L., Briend, A., Ghisolfi, J., Goulet, O., Navarro, J.,... & Vidailhet, M. (2000). La nutrition iodée chez l'enfant. Archives de pédiatrie, 7(1), 66-74.
↑Lin, C.-J. and Pehkonen, S. O., Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl-): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103D, 28093–28102, 1998.
↑Lin, C.-J. and Pehkonen, S. O., Aqueous phase reactions of mercury with free radicals and chlorine: Implications for atmospheric mercury chemistry ; Chemosphere, 38, 1253–1263, 1999.
↑Goodsite, M., Plane, J. M. C., and Skov, H., A theoretical study of the oxidation of Hg to HgBr2 in the troposphere, Environ. Sci. Technol., 38, 1772–1776, 2004
↑Evans M.J, Jacob D.J, Atlas E, Cantrell C.A, Eisele F, Flocke F, Fried A, Mauldin R.L, Ridley B.A, Wert B, Talbot R, Blake D, Heikes B, Snow J, Welega J, Weinheimer A-J et Dibb J (2003) Coupled evolution of BrOX-ClOXHOX-NOX chemistry during bromine-catalyzed ozone depletion events in the Arctic boundary layer, J. Geophys. Res., 108(D4), 8368, doi:10.1029/2002JD002732.
↑Zingler J & Platt U (2005) Iodine oxide in the Dead Sea Valley: Evidence for inorganic sources of boundary layer IO, J. Geophys. Res., 110, D07307, doi:10.1029/2004JD004993