H314 : Provoque de graves brûlures de la peau et des lésions oculaires H335 : Peut irriter les voies respiratoires P261 : Éviter de respirer les poussières/fumées/gaz/brouillards/vapeurs/aérosols. P280 : Porter des gants de protection/des vêtements de protection/un équipement de protection des yeux/du visage. P310 : Appeler immédiatement un CENTRE ANTIPOISON ou un médecin. P305+P351+P338 : En cas de contact avec les yeux : rincer avec précaution à l’eau pendant plusieurs minutes. Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer.
L'un des principaux inconvénients de l'IBX est sa solubilité limitée : il est insoluble dans de nombreux solvants organiques courants. Dans le passé, l'IBX a été cru sensible aux chocs, mais il a ensuite été démontré que des échantillons d'IBX sont sensibles aux chocs en raison du bromate de potassium résiduel, issu de la synthèse[3],[4]. L'IBX commercial (SIBX:Stabilized IBX) est stabilisé par des acides carboxyliques tels que l'acide benzoïque et l'acide isophtalique[2].
L'acide 2-iodylbenzoïque, ortho Ph(I(=O)2),(COOH), est un tautomère de l'acide 2-iodoxybenzoïque[5]. L'acidité de l'IBX qui a été mesurée dans l'eau (pKa=2,4) et le DMSO (pKa=6,65)[6], est connue pour affecter les réactions chimiques, par exemple les oxydations accompagnées de réactions d'isomérisation catalysées par les acides.
D'après le mécanisme dit de « torsion hypervalente »
[8]
l'oxydation d'un alcool en aldéhyde implique un échange de ligands au cours duquel l'alcool remplace le groupe hydroxyle suivi d'une torsion et d'une élimination.
La torsion est rendue nécessaire par la disposition de l'oxygène doublement lié à l'iode car celui-ci se trouve en dehors du plan contenant le groupe alkoxy ce qui empêche l'élimination concertée d'avoir lieu. La torsion hypervalente est donc un réarrangement dans lequel l'atome d'oxygène est amené dans le plan approprié pour qu'un état de transition cyclique à cinq centres puisse se mettre en place lors de l'élimination. On peut montrer par des calculs de chimie numérique qu'il s'agit là de l'étape cinétiquement déterminante de l'oxydation.
Ce mécanisme explique aussi pourquoi l'oxydation des grands alcools est plus rapide que celle des plus petits : en effet l'encombrement stérique qui existe entre l'atome d'hydrogène en position ortho et les hydrogènes dans le groupe alkoxy est le moteur de la torsion, or cette répulsion stérique est d'autant plus forte que le groupe alkoxy est volumineux. Par des calculs du même type on peut prédire qu'en remplaçant cet atome d'hydrogène par un groupe méthyle en ortho le dérivé d'IBX obtenu sera beaucoup plus réactif avec une vitesse de réaction multipliée par cent. La torsion est alors tellement facilitée que c'est la réaction d'élimination qui devient l'étape cinétiquement déterminante.
Emploi
L'acide 2-iodoxybenzoïque est disponible sous forme de gel de silice ou d'IBX lié à du polystyrène. Dans de nombreuses applications, l'IBX est remplacé par le periodinane de Dess-Martin qui est beaucoup plus soluble dans les solvants organiques courants.
En 2001, K.C. Nicolaou et son équipe ont publié une série d'articles dans le Journal of the American Chemical Society démontrant, entre autres transformations, la possibilité d'utiliser de l'IBX pour oxyder les carbones benzyliques de composés aromatiques et carbonyles conjugués[10].
Clivage oxydatif
L'acide 2-iodoxobenzoïque est connu aussi pour oxyder les diolsvicinaux comme des glycols en dicétones et sans couper la liaison carbone-carbone entre les deux fonctions alcool[11]. Cependant, un clivage oxydatif peut se produire lorsque des conditions plus dures sont utilisées (température plus élevée ou de l'acide trifluoroacétique comme solvant)[12] :
Ci-dessous, le mécanisme réactionnel de ce clivage de glycol est basé sur la formation initiale d'un produit d'addition entre un mésomère de l'IBX (10-I-4 IBX en notation N-I-L) 1 et une molécule de DMSO2, et qui consiste en l'intermédiaire 12-I-5 3 dans lequel le DMSO sert de ligand partant lors de l'échange avec l'alcool entrant 4 pour former l'intermédiaire 5. Une molécule d'eau est alors expulsée formant le 12-I-5 periodinane spirobicyclique 6 qui se clive en 7 et en deux cétones 8. Dans cet exemple, cette réaction est en concurrence avec l'oxydation de 5 qui peut former une acyloïne (α-hydroxy cétone) grâce à la présence d'atomes d'hydrogène en alpha du groupe hydroxyle. Il a été montré que la présence d'acide trifluoroacétique facilite la réaction globale.
α-hydroxylations
S. F. Kirsch et ses collègues ont réussi à hydroxyler la position α de composés carboxyliques avec l'IBX dans des conditions douces[13]. Ce procédé pourrait être étendu à des esters β-cétoniques[14].
Oxydation de β-hydroxycétones en β-dicétones
S.L. Bartlett et C.M. Beaudry ont découvert que l'IBX est un réactif utile pour la transformation de β-hydroxycétones en β-dicétones. L'acide 2-iodoxobenzoïque offre des rendements supérieurs à la fois au protocole d'oxydation de Swern et à celui de Dess-Martin[15].
↑ a et bFrigerio, M. ; Santagostino, M. ; Sputore, S., « A User-Friendly Entry to 2-Iodoxybenzoic Acid (IBX) », J. Org. Chem., vol. 64, no 12, , p. 4537–4538 (DOI10.1021/jo9824596).
↑Dess, D. B. ; Martin, J. C., « A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for the Selective Oxidation of Primary or Secondary Alcohols and a Variety of Related 12-I-5 Species », J. Am. Chem. Soc., vol. 113, no 19, , p. 7277–7287 (DOI10.1021/ja00019a027).
↑Gallen, M. J. ; Goumont, R. ; Clark, T. ; Terrier, F. ; Williams, C. M., « o-Iodoxybenzoic Acid (IBX): pKa and Proton-Affinity Analysis », Angew. Chem. Int. Ed., vol. 45, no 18, , p. 2929–2934 (PMID16566050, DOI10.1002/anie.200504156).
↑Su, J. T. ; Goddard, W. A. III, « Enhancing 2-Iodoxybenzoic Acid Reactivity by Exploiting a Hypervalent Twist », J. Am. Chem. Soc., vol. 127, no 41, , p. 14146–14147 (PMID16218584, DOI10.1021/ja054446x).
↑ a et bMohapatra, D. K. ; Yellol, G. S., « Asymmetric Total Synthesis of Eicosanoid », ARKIVOC, vol. 2005, no 3, , p. 144–155 (lire en ligne [PDF]).
↑(en) K. C. Nicolaou, P. S. Baran, Y. L. Zhong, Selective oxidation at carbon adjacent to aromatic systems with IBX, J. Am. Chem. Soc., 2001, vol. 123(13), p. 3183-5. DOI10.1021/ja004218x.
↑Frigerio, M. ; Santagostino, M., « A Mild Oxidizing Reagent for Alcohols and 1,2-Diols: o-Iodoxybenzoic Acid (IBX) in DMSO », Tetrahedron Lett., vol. 35, no 43, , p. 8019–8022 (DOI10.1016/0040-4039(94)80038-3)
↑Moorthy, J. N. ; Singhal, N. ; Senapati, K., « Oxidative Cleavage of Vicinal Diols: IBX can do what Dess–Martin Periodinane (DMP) can », Org. Biomol. Chem., vol. 5, no 5, , p. 767–771 (PMID17315062, DOI10.1039/b618135j)
↑Kirsch, S. F., « IBX-Mediated α-Hydroxylation of α-Alkynyl Carbonyl Systems. A Convenient Method for the Synthesis of Tertiary Alcohols », J. Org. Chem., vol. 70, no 24, , p. 10210–10212 (PMID16292876, DOI10.1021/jo051898j).
↑Bartlett, S.L. ; Beaudry, C.M., « High Yielding Oxidation of β-Hydroxyketones to β-Diketones Using o-Iodoxybenzoic Acid », J. Org. Chem., vol. 76, no 23, , p. 9852–9855 (DOI10.1021/jo201810c)