Subset

Euler diagram showing
A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ).

In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment). A is a subset of B may also be expressed as B includes (or contains) A or A is included (or contained) in B. A k-subset is a subset with k elements.

When quantified, is represented as [1]

One can prove the statement by applying a proof technique known as the element argument[2]:

Let sets A and B be given. To prove that

  1. suppose that a is a particular but arbitrarily chosen element of A
  2. show that a is an element of B.

The validity of this technique can be seen as a consequence of universal generalization: the technique shows for an arbitrarily chosen element c. Universal generalisation then implies which is equivalent to as stated above.

Definition

If A and B are sets and every element of A is also an element of B, then:

  • A is a subset of B, denoted by , or equivalently,
  • B is a superset of A, denoted by

If A is a subset of B, but A is not equal to B (i.e. there exists at least one element of B which is not an element of A), then:

  • A is a proper (or strict) subset of B, denoted by , or equivalently,
  • B is a proper (or strict) superset of A, denoted by

The empty set, written or has no elements, and therefore is vacuously a subset of any set X.

Basic properties

and implies
  • Reflexivity: Given any set , [3]
  • Transitivity: If and , then
  • Antisymmetry: If and , then .

Proper subset

  • Irreflexivity: Given any set , is False.
  • Transitivity: If and , then
  • Asymmetry: If then is False.

⊂ and ⊃ symbols

Some authors use the symbols and to indicate subset and superset respectively; that is, with the same meaning as and instead of the symbols and [4] For example, for these authors, it is true of every set A that (a reflexive relation).

Other authors prefer to use the symbols and to indicate proper (also called strict) subset and proper superset respectively; that is, with the same meaning as and instead of the symbols and [5] This usage makes and analogous to the inequality symbols and For example, if then x may or may not equal y, but if then x definitely does not equal y, and is less than y (an irreflexive relation). Similarly, using the convention that is proper subset, if then A may or may not equal B, but if then A definitely does not equal B.

Examples of subsets

The regular polygons form a subset of the polygons.
  • The set A = {1, 2} is a proper subset of B = {1, 2, 3}, thus both expressions and are true.
  • The set D = {1, 2, 3} is a subset (but not a proper subset) of E = {1, 2, 3}, thus is true, and is not true (false).
  • The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10}
  • The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line. These are two examples in which both the subset and the whole set are infinite, and the subset has the same cardinality (the concept that corresponds to size, that is, the number of elements, of a finite set) as the whole; such cases can run counter to one's initial intuition.
  • The set of rational numbers is a proper subset of the set of real numbers. In this example, both sets are infinite, but the latter set has a larger cardinality (or power) than the former set.

Another example in an Euler diagram:

Power set

The set of all subsets of is called its power set, and is denoted by .[6]

The inclusion relation is a partial order on the set defined by . We may also partially order by reverse set inclusion by defining

For the power set of a set S, the inclusion partial order is—up to an order isomorphism—the Cartesian product of (the cardinality of S) copies of the partial order on for which This can be illustrated by enumerating , and associating with each subset (i.e., each element of ) the k-tuple from of which the ith coordinate is 1 if and only if is a member of T.

The set of all -subsets of is denoted by , in analogue with the notation for binomial coefficients, which count the number of -subsets of an -element set. In set theory, the notation is also common, especially when is a transfinite cardinal number.

Other properties of inclusion

  • A set A is a subset of B if and only if their intersection is equal to A. Formally:
  • A set A is a subset of B if and only if their union is equal to B. Formally:
  • A finite set A is a subset of B, if and only if the cardinality of their intersection is equal to the cardinality of A. Formally:
  • The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation.
  • Inclusion is the canonical partial order, in the sense that every partially ordered set is isomorphic to some collection of sets ordered by inclusion. The ordinal numbers are a simple example: if each ordinal n is identified with the set of all ordinals less than or equal to n, then if and only if

See also

  • Convex subset – In geometry, set whose intersection with every line is a single line segment
  • Inclusion order – Partial order that arises as the subset-inclusion relation on some collection of objects
  • Mereology – Study of parts and the wholes they form
  • Region – Connected open subset of a topological space
  • Subset sum problem – Decision problem in computer science
  • Subsumptive containment – System of elements that are subordinated to each other
  • Subspace – Mathematical set with some added structure
  • Total subset – Subset T of a topological vector space X where the linear span of T is a dense subset of X

References

  1. ^ Rosen, Kenneth H. (2012). Discrete Mathematics and Its Applications (7th ed.). New York: McGraw-Hill. p. 119. ISBN 978-0-07-338309-5.
  2. ^ Epp, Susanna S. (2011). Discrete Mathematics with Applications (Fourth ed.). p. 337. ISBN 978-0-495-39132-6.
  3. ^ Stoll, Robert R. (1963). Set Theory and Logic. San Francisco, CA: Dover Publications. ISBN 978-0-486-63829-4.
  4. ^ Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, p. 6, ISBN 978-0-07-054234-1, MR 0924157
  5. ^ Subsets and Proper Subsets (PDF), archived from the original (PDF) on 2013-01-23, retrieved 2012-09-07
  6. ^ Weisstein, Eric W. "Subset". mathworld.wolfram.com. Retrieved 2020-08-23.

Bibliography

Read other articles:

Ungerns Grand Prix 1999Datum15 augusti 1999BanaHungaroringSträcka77 × 3,973 = 305,921 kmVinnareMika Häkkinen, McLaren-MercedesPole positionMika Häkkinen, McLaren-MercedesSnabbaste varvDavid Coulthard, McLaren-Mercedes, 1:20,699 Ungerns Grand Prix 1999 var det elfte av 16 lopp ingående i formel 1-VM 1999. Resultat Mika Häkkinen, McLaren-Mercedes, 10 poäng David Coulthard, McLaren-Mercedes, 6 Eddie Irvine, Ferrari, 4 Heinz-Harald Frentzen, Jordan-Mugen Honda, 3 Rubens Barrichel...

 

Phrase in the New Testament Kingdom of Jesus Christ redirects here. For the Philippine-based Restorationist church, see Kingdom of Jesus Christ (church). For the depiction of Jesus Christ as king, see Christ the King. For any kingdom that endorses Christianity, see Christian state. God the Father on his throne, Westphalia, Germany, late 15th century. The Kingdom of God (and its related form the Kingdom of Heaven in the Gospel of Matthew) is one of the key elements of the teachings of Jesus in...

 

Professional wrestling tag team championship UWA World Tag Team ChampionshipKohei Kinoshita with one of the titles around his waist in 2023DetailsPromotionEl Dorado WrestlingKohaku Wrestling WarsMichinoku Pro WrestlingUnion Pro WrestlingUniversal Wrestling AssociationBig Japan Pro Wrestling (current)Date established1982Current champion(s)Kohei Kinoshita and YasshiDate wonFebruary 11, 2023StatisticsFirst champion(s)Riki Choshu and Gran HamadaMost reignsSpeed of Sounds (Tsutomu Oosugi and Hercu...

M. Dawam RahardjoInformasi pribadiKebangsaanIndonesiaSunting kotak info • L • B M. Dawam Rahardjo (lahir di Bentengsari, 3 September 1968) adalah Bupati Lampung Timur yang terpilih untuk periode 2021-2026. Ia merupakan politisi dari Partai Kebangkitan Bangsa (PKB). Dawam resmi menjabat sebagai bupati per 2021 bersama wakilnya, yaitu Azwar Hadi.[1] Pada April 2023, ia mendapatkan banyak kritik dari masyarakat Indonesia setelah memanggil dan diduga mengintimidasi ASN sekal...

 

Restaurant at Disneyland Paris This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: L'Auberge de Cendrillon – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) L'Auberge de CendrillonDisneyland Park (Paris)AreaFantasylandStatusOperatingOpening dateApril 12, 1992 Ride stati...

 

Pour les articles homonymes, voir Infinity. Infinity Single de Guru Joshextrait de l'album Infinity Sortie 18 décembre 1989 Durée 4:00 Genre Acid house Format 7 single, 12 maxi Auteur-compositeur Paul Walden Producteur Guru Josh Label Deconstruction Singles de Guru Josh Whose Law (Is It Anyway)(1990)modifier Infinity, aussi connu sous le titre de Infinity (1990's... Time for the Guru), est une chanson d'acid house enregistrée par le DJ britannique Guru Josh sorti en 1989 sur l'al...

Una impresión azulada de los planos del Kaiserforum por Gottfried Semper, en 1870. La plaza de los Héroes, en una vista aérea, en 1900. Estatua del archiduque Carlos de Austria-Teschen en la plaza de los Héroes. Monumento al príncipe Eugenio de Saboya en la plaza de los Héroes. La Puerta exterior que da al Heldenplatz. La plaza de los Héroes o Heldenplatz es una histórica plaza en el centro de Viena. Situado en el barrio de Innere Stadt, el presidente de Austria reside en el ala conti...

 

Hinter dem Lämmchen WappenStraße in Frankfurt am Main Hinter dem Lämmchen Gasse Hinter dem Lämmchen im Juni 2018, Blick vom Frankfurter Kunstverein zum Hühnermarkt Basisdaten Ort Frankfurt am Main Ortsteil Altstadt Angelegt 13. Jahrhundert Neugestaltet 2014–2018 Hist. Namen Gleibergergasse, Glauburgergasse (nach der Familie Glauburg) Esslingergasse Anschluss­straßen Markt Querstraßen Neugasse, Nürnberger Hofgässchen (†) Plätze Hühnermarkt Bauwerke Zu den drei Römern, Mohr...

 

Fiorella Corimberto Medallista olímpica Fiorella Corimberto en los Juegos Olímpicos de la Juventud 2018.Datos personalesApodo(s) FioreNacimiento Quilmes, Buenos Aires,  Argentina29 de agosto de 2001 (22 años)Nacionalidad(es) ArgentinaAltura 1.76 mPeso 61 kgCarrera deportivaDeporte Balonmano playaClub profesionalClub Mariano AcostaPosición Lateral[1]​Dorsal(es) 5Selección  Argentina               Me...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) ديفيد بيرنير   معلومات شخصية الميلاد 21 يناير 1977 (46 سنة)  مواطنة الولايات المتحدة  مناصب الحياة العملية المدرسة الأم جامعة بورتوريكو  [لغات أخرى]...

 

2003 kidnapping and attack in Israel Murder of Oleg Shaichatclass=notpageimage| The attack siteNative nameרצח אולג שייחטLocationNorthern District, near Kafr Kana, IsraelCoordinates32°45′44″N 35°20′40″E / 32.7622°N 35.3444°E / 32.7622; 35.3444DateJuly 21, 2003; 20 years ago (2003-07-21)Attack typeKidnapping, Shooting attackDeaths1 Israeli soldier (Oleg Shaichat)PerpetratorTerrorist cell Free People of the GalileeNo. of...

 

Tillandsia roland-gosseliniiPhân loại khoa họcGiới (regnum)Plantae(không phân hạng)Angiospermae(không phân hạng)Monocots(không phân hạng)CommelinidsBộ (ordo)PoalesHọ (familia)BromeliaceaePhân họ (subfamilia)TillandsioideaeChi (genus)TillandsiaLoài (species)T. roland-gosseliniiDanh pháp hai phầnTillandsia roland-gosseliniiMez 1916 Tillandsia roland-gosselinii là một loài thuộc chi Tillandsia. Đây là loài đặc hữu của México. Giống Tillandsia 'Fi...

Place in GreeceMichalitsi ΜιχαλίτσιMichalitsiLocation within the regional unit Coordinates: 41°04′16.18″N 22°42′10.37″E / 41.0711611°N 22.7028806°E / 41.0711611; 22.7028806CountryGreeceAdministrative regionCentral MacedoniaRegional unitKilkisMunicipalityKilkisMunicipal unitCherso • Municipal unit157.9 km2 (61.0 sq mi)Elevation50 m (160 ft)Population (2011)[1] • Municipal unit2,629 ...

 

Islamic phrase (In the name of Allah (The God), the Most Gracious, the Most Merciful) For other uses, see Bismillah and In the name of Allah (disambiguation). The basmala on the oldest surviving Quran. Bismala calligraphy A calligraphic rendition of the Bismillah Mughal-era calligraphy The Basmala (Arabic: بَسْمَلَة, basmalah; also known by its opening words Bi-smi llāh; بِسْمِ ٱللَّٰهِ, In the name of Allah),[1] or Tasmiyyah (Arabic: تَسْمِيَّة), is ...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Setembro de 2018) Mausoléo do Presidente Castelo Branco. Estrutura suspensa que faz parte do roteiro turístico da cidade A economia de Fortaleza tem sua maior receita (o PIB estimado em 2014 é de R$ 56,728 bilhões[1]) oriundo do seu co...

Former bank in the southeastern United States This article is about the United States banking brand. For the Canadian parent company, see Royal Bank of Canada. RBC Bank (Georgia), N.A.Trade nameRBC BankTypeSubsidiaryIndustryBank (federally chartered)FoundedMarch 5, 2012; 11 years ago (2012-03-05)Area servedUnited StatesParentRoyal Bank of CanadaWebsitewww.rbcbank.com RBC Bank is the trading name of RBC Bank (Georgia), N.A., the United States–based retail banking division o...

 

1971 single by CanSpoonGerman single picture sleeve (1972)Single by Canfrom the album Ege Bamyasi B-sideShikako Maru TenReleased1971RecordedInner Space Studio, CologneGenreKrautrockLength3:03LabelUnited ArtistsSongwriter(s)CanProducer(s)CanMusic videoSpoon (Official Audio) on YouTube Spoon is a song by krautrock group Can, recorded in 1971. It was originally released as a single with the song Shikako Maru Ten on the B-side. Spoon also appeared as the final track to the band's album Ege Bamyas...

 

Pour un article plus général, voir Histoire du Cameroun. Guerre du Cameroun Informations générales Date mai 1955 - janvier 1971 Lieu Cameroun français (1955 -1960)Cameroun (1960-1971) Casus belli Réclamation de l'indépendance et de la réunification immédiate par l'UPC La répression des émeutes de mai 1955 au Cameroun Bannissement de l'UPC au Cameroun français Issue Indépendance et réunification du CamerounÉcrasement de l'UPC Instauration de la dictature de Ahmadou Ahidjo Change...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: DFDVD II – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this template message) 2008 video by Dog Fashion DiscoDFDVD IIVideo by Dog Fashion DiscoReleasedOctober 28, 2008Recorded1995 - 2007Length3:16:00LabelRotten RecordsDog Fashio...

 

24 Xmas time倉木麻衣的单曲收录于专辑《touch Me!》B面All I want发行日期2008年11月26日 (2008-11-26)格式 CD 線上下載 类型 J-Pop 聖誕(英语:Christmas music) 时长4:16唱片公司 NORTHERN MUSIC Being 作曲All The Rage作词倉木麻衣编曲 All The Rage JJ 卡洛斯·H 倉木麻衣单曲年表 每一秒都Love for you(2008年) 24 Xmas time (2008年) PUZZLE/Revive(2009年) 音频样本文件帮助 《24 Xmas time》是日本歌手倉木...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!