Isolated point

"0" is an isolated point of

In mathematics, a point x is called an isolated point of a subset S (in a topological space X) if x is an element of S and there exists a neighborhood of x that does not contain any other points of S. This is equivalent to saying that the singleton {x} is an open set in the topological space S (considered as a subspace of X). Another equivalent formulation is: an element x of S is an isolated point of S if and only if it is not a limit point of S.

If the space X is a metric space, for example a Euclidean space, then an element x of S is an isolated point of S if there exists an open ball around x that contains only finitely many elements of S. A point set that is made up only of isolated points is called a discrete set or discrete point set (see also discrete space).

Any discrete subset S of Euclidean space must be countable, since the isolation of each of its points together with the fact that rationals are dense in the reals means that the points of S may be mapped injectively onto a set of points with rational coordinates, of which there are only countably many. However, not every countable set is discrete, of which the rational numbers under the usual Euclidean metric are the canonical example.

A set with no isolated point is said to be dense-in-itself (every neighbourhood of a point contains other points of the set). A closed set with no isolated point is called a perfect set (it contains all its limit points and no isolated points).

The number of isolated points is a topological invariant, i.e. if two topological spaces X, Y are homeomorphic, the number of isolated points in each is equal.

Examples

Standard examples

Topological spaces in the following three examples are considered as subspaces of the real line with the standard topology.

  • For the set the point 0 is an isolated point.
  • For the set each of the points is an isolated point, but 0 is not an isolated point because there are other points in S as close to 0 as desired.
  • The set of natural numbers is a discrete set.

In the topological space with topology the element a is an isolated point, even though belongs to the closure of (and is therefore, in some sense, "close" to a). Such a situation is not possible in a Hausdorff space.

The Morse lemma states that non-degenerate critical points of certain functions are isolated.

Two counter-intuitive examples

Consider the set F of points x in the real interval (0,1) such that every digit xi of their binary representation fulfills the following conditions:

  • Either or
  • only for finitely many indices i.
  • If m denotes the largest index such that then
  • If and then exactly one of the following two conditions holds: or

Informally, these conditions means that every digit of the binary representation of that equals 1 belongs to a pair ...0110..., except for ...010... at the very end.

Now, F is an explicit set consisting entirely of isolated points but has the counter-intuitive property that its closure is an uncountable set.[1]

Another set F with the same properties can be obtained as follows. Let C be the middle-thirds Cantor set, let be the component intervals of , and let F be a set consisting of one point from each Ik. Since each Ik contains only one point from F, every point of F is an isolated point. However, if p is any point in the Cantor set, then every neighborhood of p contains at least one Ik, and hence at least one point of F. It follows that each point of the Cantor set lies in the closure of F, and therefore F has uncountable closure.

See also

References

  1. ^ Gomez-Ramirez, Danny (2007), "An explicit set of isolated points in R with uncountable closure", Matemáticas: Enseñanza universitaria, 15, Escuela Regional de Matemáticas. Universidad del Valle, Colombia: 145–147


Read other articles:

Kue beras nian gao dari Kanton Tteok, kue beras Korea Idli Puto, sebuah kue beras kukus Filipina Barisan panjang berbagai toko puto di Calasiao, Pangasinan Dango, pangsit yang terbuat dari tepung beras Bánh bò yang dikukus Lontong yang terkenal di Indonesia dan Malaysia Kue Beras gaya Bangladesh, yang dikenal sebagai Bhapa Pitha Kue beras adalah segala jenis makanan yang terbuat dari tepung beras yang telah dibentuk, dikentalkan, atau digabungkan menjadi satu objek. Berbagai macam kue beras...

 

Đối với huyện cùng tên, xem Hàm Phong (huyện). Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. (tháng 5/2022) Hàm Phong Đế咸豐帝Hoàng đế Trung Hoa Hoàng đế Đại ThanhTrị vì9 tháng 3 năm 1850 – 22 tháng 8 năm 1861(11&#...

 

Gardu listrik di Tonsea Lama Komponen gardu listrikA: Jalur listrik utama B: Jalur listrik sekunder1. Kabel listrik utama 2. Kabel pentanahan 3. Kabel atas4. Trafo untuk mengukur tegangan listrik5. Saklar pemutus 6. Pemutus sirkuit7. Trafo arus8. Penangkal petir9. Trafo utama10. Gedung pengendali Sebuah gardu listrik 50 Hz di Melbourne, Australia. Tampak tiga dari lima trafo 220 kV/66 kV, serta penghalang api transformator bertegangan tinggi, masing-masing dengan kapasitas 150 ...

2006 Pittsburgh PiratesLeagueNational LeagueDivisionCentralBallparkPNC ParkCityPittsburgh, Pennsylvania[1]Record67–95 (.414)Divisional place5thOwnersKevin McClatchyGeneral managersDave LittlefieldManagersJim TracyTelevisionFSN PittsburghRadioKDKA-AM (Steve Blass, Greg Brown, Lanny Frattare, Bob Walk, John Wehner) ← 2005 Seasons 2007 → The 2006 Pittsburgh Pirates season was the 125th season of the franchise; the 120th in the National League. This was their ...

 

عوالم خفية تأليف أمين جمالمحمد محرزمحمود حمدان إخراج رامي إمام بطولة عادل إمامهبة مجديمي سليمفتحي عبد الوهابصلاح عبد اللهبشرى البلد  مصر لغة العمل ‍العربية عدد الحلقات 30 مدير الإنتاج رامي إمام منتج رامى امام الإصدار القناة شبكة قنوات سي بي سيقناة إس بي سي صيغة الصورة HD...

 

Dieser Artikel beschreibt die Bundesstraße 39 in Deutschland. Zur gleichnamigen Straße in Österreich siehe Pielachtal Straße. Vorlage:Infobox hochrangige Straße/Wartung/DE-B Bundesstraße 39 in Deutschland Karte Verlauf der B 39 Alle Koordinaten: OSM | WikiMap Basisdaten Betreiber: Deutschland Bundesrepublik Deutschland Straßenbeginn: Frankenstein(49° 26′ 18″ N, 7° 58′ 44″ O49.4384227.978942) Straßenende: Mainhardt(49° 4...

Частина серії статей на тему:ІндоєвропейціМіграції індоєвропейців Філологія Праіндоєвропейська мова Джерела Авеста Архаїчна латина Бегістунський напис Вірменська і Готська Біблія Глосарій Ендліша Іліада й Одіссея Давньоірландське письмо Лінійне письмо Б Лувійське п

 

Overview of and topical guide to Vatican City See also: Index of Vatican City-related articles The Flag of Vatican CityThe Coat of arms of Vatican City The location of Vatican City within Europe. An enlargeable map of Vatican City State, including extraterritorial properties of the Holy See bordering Vatican City. The following outline is provided as an overview of and introduction to Vatican City: Vatican City – an ecclesiastical or sacerdotal-monarchical[1] state, being the so...

 

У этого топонима есть и другие значения, см. Улица Елизарова. Проспект Елизарова Проспект Елизарова рядом со станцией метро «Елизаровская» Общая информация Страна Россия Город Санкт-Петербург Район Невский Протяжённость ≈ 1,7 км Метро  Елизаровская Прежние названия П...

Senegalese footballer Krépin Diatta Diatta with Monaco in 2022Personal informationFull name Krépin Diatta[1]Date of birth (1999-02-25) 25 February 1999 (age 24)Place of birth Dakar, Senegal[2]Height 1.75 m (5 ft 9 in)[3]Position(s) Right winger[2]Team informationCurrent team MonacoNumber 27Youth career Oslo Football AcademySenior career*Years Team Apps (Gls)2017–2018 Sarpsborg 08 22 (3)2018–2021 Club Brugge 62 (17)2021– Monaco 63 (6)...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Harian Jogja – berita · surat kabar · buku · cendekiawan · JSTOR Harian JogjaBerbudaya, Menginspirasi, TepercayaTipeSurat kabar harianPemilikPT Aksara Dinamika Jogja (Bisnis Indonesia Group)Didirikan20 M...

 

2000 French filmThe Gleaners and IDirected byAgnès VardaStarringBodan LitnanskiFrançois WertheimerRelease dateJuly 7, 2000 (France)Running time82 minutesCountryFranceLanguagesFrenchEnglish The Gleaners and I (French: Les glaneurs et la glaneuse, lit. The gleaners and the female gleaner) is a 2000 French documentary film by Agnès Varda that features various kinds of gleaning. It screened out of competition at the 2000 Cannes Film Festival (Official Selection 2000), and later went on to win ...

Star in the constellation Aquarius Sigma Aquarii Location of σ Aquarii (circled) Observation dataEpoch J2000      Equinox J2000 Constellation Aquarius Right ascension 22h 30m 38.82286s[1] Declination −10° 40′ 40.7031″[1] Apparent magnitude (V) 4.81[2] Characteristics Spectral type A0 IVs[3] U−B color index −0.14[2] B−V color index −0.08[2] AstrometryRadial ve...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dnevnik HRT – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this template message)Croatian TV series or program Dnevnik HRTStudio scenography in April 2009GenreNews programmePresented byĐurica DrobacVlatka KalinićM...

 

Matt Gaetz, derzeitiger Vertreter des ersten Kongresswahlbezirks von Florida Neil Dunn, derzeitiger Vertreter des zweiten Kongresswahlbezirks von Florida Kat Cammack, derzeitige Vertreterin des dritten Kongresswahlbezirks von Florida Aaron Bean, derzeitiger Vertreter des vierten Kongresswahlbezirks von Florida John Rutherford, derzeitiger Vertreter des fünften Kongresswahlbezirks von Florida Michael Waltz, derzeitiger Vertreter des sechsten Kongresswahlbezirks von Florida Cory Mills, derzeit...

Municipality in Southern Denmark, DenmarkBillund Municipality Billund Kommune (Danish)MunicipalityGrindsted train station in the largest town of the municipality Coat of armsLocation in DenmarkCoordinates: 55°43′55″N 8°57′22″E / 55.732°N 8.956°E / 55.732; 8.956CountryDenmarkRegionSouthern DenmarkEstablished1 January 2007Government • MayorStephanie StorbankArea • Total536.51 km2 (207.15 sq mi)Population (1. Ja...

 

Chinese online television broadcaster This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: China Network Television – news · newspapers · books · scholar...

 

Mexican beauty pageant title Formation2013TypeBeauty pageantHeadquartersMexico CityLocationMexicoMembership Miss Grand InternationalOfficial language SpanishNational DirectorFlavio FalsiroliParent organizationFalsiroli Org.(2022 – 2023)Miss Mexico Org.(2017 – 2021)Rostro de México(2013 – 2016) Miss Grand Mexico is a national title bestowed upon a woman chosen to represent Mexico at the international pageant headquartered in Thailand, Miss Grand Internation...

Rape Types Acquaintance rape Campus rape Corrective rape LGBT victims Drug-facilitated rape Date rape Gang rape Genocidal rape Gray rape Live streaming rape Marital rape Prison rape Rape chant Serial rape Statutory rape Unacknowledged rape Rape by deception Effects and motivations Effects and aftermath Pregnancy from rape Rape trauma syndrome Causes Post-assault mistreatment Weinstein effect Sociobiological theories Rape culture By country Afghanistan Belgium China Democratic Republic of the ...

 

Questa voce sull'argomento calciatori scozzesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jimmy Davidson Nazionalità  Scozia Calcio Ruolo Difensore Termine carriera 1963 Carriera Squadre di club1 1945-1960 Partick Thistle274 (29)1960-1963 Caledonian? (?) Nazionale 1954-1955 Scozia8 (1) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbol...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!