Convex set

Illustration of a convex set shaped like a deformed circle. The line segment joining points x and y lies completely within the set, illustrated in green. Since this is true for any potential locations of two points within the set, the set is convex.
Illustration of a non-convex set. The line segment joining points x and y partially extends outside of the set, illustrated in red, and the intersection of the set with the line occurs in two places, illustrated in black.

In geometry, a set of points is convex if it contains every line segment between two points in the set. Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set.[1][2] For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

The boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset A of Euclidean space is called the convex hull of A. It is the smallest convex set containing A.

A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex functions is called convex analysis.

Spaces in which convex sets are defined include the Euclidean spaces, the affine spaces over the real numbers, and certain non-Euclidean geometries. The notion of a convex set in Euclidean spaces can be generalized in several ways by modifying its definition, for instance by restricting the line segments that such a set is required to contain.

Definitions

A function is convex if and only if its epigraph, the region (in green) above its graph (in blue), is a convex set.

Let S be a vector space or an affine space over the real numbers, or, more generally, over some ordered field (this includes Euclidean spaces, which are affine spaces). A subset C of S is convex if, for all x and y in C, the line segment connecting x and y is included in C.

This means that the affine combination (1 − t)x + ty belongs to C for all x,y in C and t in the interval [0, 1]. This implies that convexity is invariant under affine transformations. Further, it implies that a convex set in a real or complex topological vector space is path-connected (and therefore also connected).

A set C is strictly convex if every point on the line segment connecting x and y other than the endpoints is inside the topological interior of C. A closed convex subset is strictly convex if and only if every one of its boundary points is an extreme point.[3]

A set C is absolutely convex if it is convex and balanced.

Examples

The convex subsets of R (the set of real numbers) are the intervals and the points of R. Some examples of convex subsets of the Euclidean plane are solid regular polygons, solid triangles, and intersections of solid triangles. Some examples of convex subsets of a Euclidean 3-dimensional space are the Archimedean solids and the Platonic solids. The Kepler-Poinsot polyhedra are examples of non-convex sets.

Non-convex set

A set that is not convex is called a non-convex set. A polygon that is not a convex polygon is sometimes called a concave polygon,[4] and some sources more generally use the term concave set to mean a non-convex set,[5] but most authorities prohibit this usage.[6][7]

The complement of a convex set, such as the epigraph of a concave function, is sometimes called a reverse convex set, especially in the context of mathematical optimization.[8]

Properties

Given r points u1, ..., ur in a convex set S, and r nonnegative numbers λ1, ..., λr such that λ1 + ... + λr = 1, the affine combination belongs to S. As the definition of a convex set is the case r = 2, this property characterizes convex sets.

Such an affine combination is called a convex combination of u1, ..., ur.

Intersections and unions

The collection of convex subsets of a vector space, an affine space, or a Euclidean space has the following properties:[9][10]

  1. The empty set and the whole space are convex.
  2. The intersection of any collection of convex sets is convex.
  3. The union of a sequence of convex sets is convex, if they form a non-decreasing chain for inclusion. For this property, the restriction to chains is important, as the union of two convex sets need not be convex.

Closed convex sets

Closed convex sets are convex sets that contain all their limit points. They can be characterised as the intersections of closed half-spaces (sets of points in space that lie on and to one side of a hyperplane).

From what has just been said, it is clear that such intersections are convex, and they will also be closed sets. To prove the converse, i.e., every closed convex set may be represented as such intersection, one needs the supporting hyperplane theorem in the form that for a given closed convex set C and point P outside it, there is a closed half-space H that contains C and not P. The supporting hyperplane theorem is a special case of the Hahn–Banach theorem of functional analysis.

Convex sets and rectangles

Let C be a convex body in the plane (a convex set whose interior is non-empty). We can inscribe a rectangle r in C such that a homothetic copy R of r is circumscribed about C. The positive homothety ratio is at most 2 and:[11]

Blaschke-Santaló diagrams

The set of all planar convex bodies can be parameterized in terms of the convex body diameter D, its inradius r (the biggest circle contained in the convex body) and its circumradius R (the smallest circle containing the convex body). In fact, this set can be described by the set of inequalities given by[12][13] and can be visualized as the image of the function g that maps a convex body to the R2 point given by (r/R, D/2R). The image of this function is known a (r, D, R) Blachke-Santaló diagram.[13]

Blaschke-Santaló (r, D, R) diagram for planar convex bodies. denotes the line segment, the equilateral triangle, the Reuleaux triangle and the unit circle.

Alternatively, the set can also be parametrized by its width (the smallest distance between any two different parallel support hyperplanes), perimeter and area.[12][13]

Other properties

Let X be a topological vector space and be convex.

  • and are both convex (i.e. the closure and interior of convex sets are convex).
  • If and then (where ).
  • If then:
    • , and
    • , where is the algebraic interior of C.

Convex hulls and Minkowski sums

Convex hulls

Every subset A of the vector space is contained within a smallest convex set (called the convex hull of A), namely the intersection of all convex sets containing A. The convex-hull operator Conv() has the characteristic properties of a hull operator:

  • extensive: S ⊆ Conv(S),
  • non-decreasing: S ⊆ T implies that Conv(S) ⊆ Conv(T), and
  • idempotent: Conv(Conv(S)) = Conv(S).

The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice.

Minkowski addition

Three squares are shown in the nonnegative quadrant of the Cartesian plane. The square Q1 = [0, 1] × [0, 1] is green. The square Q2 = [1, 2] × [1, 2] is brown, and it sits inside the turquoise square Q1+Q2=[1,3]×[1,3].
Minkowski addition of sets. The sum of the squares Q1=[0,1]2 and Q2=[1,2]2 is the square Q1+Q2=[1,3]2.

In a real vector-space, the Minkowski sum of two (non-empty) sets, S1 and S2, is defined to be the set S1 + S2 formed by the addition of vectors element-wise from the summand-sets More generally, the Minkowski sum of a finite family of (non-empty) sets Sn is the set formed by element-wise addition of vectors

For Minkowski addition, the zero set {0} containing only the zero vector 0 has special importance: For every non-empty subset S of a vector space in algebraic terminology, {0} is the identity element of Minkowski addition (on the collection of non-empty sets).[14]

Convex hulls of Minkowski sums

Minkowski addition behaves well with respect to the operation of taking convex hulls, as shown by the following proposition:

Let S1, S2 be subsets of a real vector-space, the convex hull of their Minkowski sum is the Minkowski sum of their convex hulls

This result holds more generally for each finite collection of non-empty sets:

In mathematical terminology, the operations of Minkowski summation and of forming convex hulls are commuting operations.[15][16]

Minkowski sums of convex sets

The Minkowski sum of two compact convex sets is compact. The sum of a compact convex set and a closed convex set is closed.[17]

The following famous theorem, proved by Dieudonné in 1966, gives a sufficient condition for the difference of two closed convex subsets to be closed.[18] It uses the concept of a recession cone of a non-empty convex subset S, defined as: where this set is a convex cone containing and satisfying . Note that if S is closed and convex then is closed and for all ,

Theorem (Dieudonné). Let A and B be non-empty, closed, and convex subsets of a locally convex topological vector space such that is a linear subspace. If A or B is locally compact then A − B is closed.

Generalizations and extensions for convexity

The notion of convexity in the Euclidean space may be generalized by modifying the definition in some or other aspects. The common name "generalized convexity" is used, because the resulting objects retain certain properties of convex sets.

Star-convex (star-shaped) sets

Let C be a set in a real or complex vector space. C is star convex (star-shaped) if there exists an x0 in C such that the line segment from x0 to any point y in C is contained in C. Hence a non-empty convex set is always star-convex but a star-convex set is not always convex.

Orthogonal convexity

An example of generalized convexity is orthogonal convexity.[19]

A set S in the Euclidean space is called orthogonally convex or ortho-convex, if any segment parallel to any of the coordinate axes connecting two points of S lies totally within S. It is easy to prove that an intersection of any collection of orthoconvex sets is orthoconvex. Some other properties of convex sets are valid as well.

Non-Euclidean geometry

The definition of a convex set and a convex hull extends naturally to geometries which are not Euclidean by defining a geodesically convex set to be one that contains the geodesics joining any two points in the set.

Order topology

Convexity can be extended for a totally ordered set X endowed with the order topology.[20]

Let YX. The subspace Y is a convex set if for each pair of points a, b in Y such that ab, the interval [a, b] = {xX | axb} is contained in Y. That is, Y is convex if and only if for all a, b in Y, ab implies [a, b] ⊆ Y.

A convex set is not connected in general: a counter-example is given by the subspace {1,2,3} in Z, which is both convex and not connected.

Convexity spaces

The notion of convexity may be generalised to other objects, if certain properties of convexity are selected as axioms.

Given a set X, a convexity over X is a collection 𝒞 of subsets of X satisfying the following axioms:[9][10][21]

  1. The empty set and X are in 𝒞
  2. The intersection of any collection from 𝒞 is in 𝒞.
  3. The union of a chain (with respect to the inclusion relation) of elements of 𝒞 is in 𝒞.

The elements of 𝒞 are called convex sets and the pair (X, 𝒞) is called a convexity space. For the ordinary convexity, the first two axioms hold, and the third one is trivial.

For an alternative definition of abstract convexity, more suited to discrete geometry, see the convex geometries associated with antimatroids.

Convex spaces

Convexity can be generalised as an abstract algebraic structure: a space is convex if it is possible to take convex combinations of points.

See also

References

  1. ^ Morris, Carla C.; Stark, Robert M. (24 August 2015). Finite Mathematics: Models and Applications. John Wiley & Sons. p. 121. ISBN 9781119015383. Retrieved 5 April 2017.
  2. ^ Kjeldsen, Tinne Hoff. "History of Convexity and Mathematical Programming" (PDF). Proceedings of the International Congress of Mathematicians (ICM 2010): 3233–3257. doi:10.1142/9789814324359_0187. Archived from the original (PDF) on 2017-08-11. Retrieved 5 April 2017.
  3. ^ Halmos, Paul R. (8 November 1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. Vol. 19 (2nd ed.). New York: Springer-Verlag. p. 5. ISBN 978-0-387-90685-0. OCLC 8169781.
  4. ^ McConnell, Jeffrey J. (2006). Computer Graphics: Theory Into Practice. Jones & Bartlett Learning. p. 130. ISBN 0-7637-2250-2..
  5. ^ Weisstein, Eric W. "Concave". MathWorld.
  6. ^ Takayama, Akira (1994). Analytical Methods in Economics. University of Michigan Press. p. 54. ISBN 9780472081356. An often seen confusion is a "concave set". Concave and convex functions designate certain classes of functions, not of sets, whereas a convex set designates a certain class of sets, and not a class of functions. A "concave set" confuses sets with functions.
  7. ^ Corbae, Dean; Stinchcombe, Maxwell B.; Zeman, Juraj (2009). An Introduction to Mathematical Analysis for Economic Theory and Econometrics. Princeton University Press. p. 347. ISBN 9781400833085. There is no such thing as a concave set.
  8. ^ Meyer, Robert (1970). "The validity of a family of optimization methods" (PDF). SIAM Journal on Control and Optimization. 8: 41–54. doi:10.1137/0308003. MR 0312915..
  9. ^ a b Soltan, Valeriu, Introduction to the Axiomatic Theory of Convexity, Ştiinţa, Chişinău, 1984 (in Russian).
  10. ^ a b Singer, Ivan (1997). Abstract convex analysis. Canadian Mathematical Society series of monographs and advanced texts. New York: John Wiley & Sons, Inc. pp. xxii+491. ISBN 0-471-16015-6. MR 1461544.
  11. ^ Lassak, M. (1993). "Approximation of convex bodies by rectangles". Geometriae Dedicata. 47: 111–117. doi:10.1007/BF01263495. S2CID 119508642.
  12. ^ a b Santaló, L. (1961). "Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa planas". Mathematicae Notae. 17: 82–104.
  13. ^ a b c Brandenberg, René; González Merino, Bernardo (2017). "A complete 3-dimensional Blaschke-Santaló diagram". Mathematical Inequalities & Applications (2): 301–348. arXiv:1404.6808. doi:10.7153/mia-20-22. ISSN 1331-4343.
  14. ^ The empty set is important in Minkowski addition, because the empty set annihilates every other subset: For every subset S of a vector space, its sum with the empty set is empty: .
  15. ^ Theorem 3 (pages 562–563): Krein, M.; Šmulian, V. (1940). "On regularly convex sets in the space conjugate to a Banach space". Annals of Mathematics. Second Series. 41 (3): 556–583. doi:10.2307/1968735. JSTOR 1968735.
  16. ^ For the commutativity of Minkowski addition and convexification, see Theorem 1.1.2 (pages 2–3) in Schneider; this reference discusses much of the literature on the convex hulls of Minkowski sumsets in its "Chapter 3 Minkowski addition" (pages 126–196): Schneider, Rolf (1993). Convex bodies: The Brunn–Minkowski theory. Encyclopedia of mathematics and its applications. Vol. 44. Cambridge: Cambridge University Press. pp. xiv+490. ISBN 0-521-35220-7. MR 1216521.
  17. ^ Lemma 5.3: Aliprantis, C.D.; Border, K.C. (2006). Infinite Dimensional Analysis, A Hitchhiker's Guide. Berlin: Springer. ISBN 978-3-540-29587-7.
  18. ^ Zălinescu, C. (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc. p. 7. ISBN 981-238-067-1. MR 1921556.
  19. ^ Rawlins G.J.E. and Wood D, "Ortho-convexity and its generalizations", in: Computational Morphology, 137-152. Elsevier, 1988.
  20. ^ Munkres, James; Topology, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2.
  21. ^ van De Vel, Marcel L. J. (1993). Theory of convex structures. North-Holland Mathematical Library. Amsterdam: North-Holland Publishing Co. pp. xvi+540. ISBN 0-444-81505-8. MR 1234493.

Read other articles:

БуршейдBourscheid   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Фальсбур Код INSEE 57100 Поштові індекси 57370 Координати 48°46′20″ пн. ш. 7°11′28″ сх. д.H G O Висота 279 - 332 м.н.р.м. Площа 3,99 км² Населення 175 (01-2020[1]) Густота 55,64 о...

 

Cet article est une ébauche concernant une localité togolaise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tcharé Administration Pays Togo Région Région de la Kara Indicatif téléphonique international +(228) Fuseau horaire UTC +0 Démographie Population 13 986 hab. (Recensement Général de la Population du Togo - 2010; actualisation partielle 2014) Densité 350 hab./km2 Géographie Coor...

 

沖縄トラフの位置(ピンク色の部分) 沖縄トラフ(おきなわトラフ、Okinawa Trough)は、南西諸島・琉球列島の北西側に位置するトラフ[1]。 概要 九州の西方から台湾島の北方まで、琉球列島の西側に沿った円弧状の、長さ約1,000km、幅約200kmの細長い海底の窪みである[1]。東シナ海で最も深い海域であり、最も深い部分で深さ約2,200m。 現在も形成中の背弧海盆&...

Ben Godfrey Godfrey celebrando la obtención del título del Norwich City de 2019.Datos personalesNombre completo Benjamin Matthew GodfreyNacimiento York, Inglaterra, Reino Unido15 de enero de 1998 (25 años)Nacionalidad(es) BritánicaAltura 1,83 m (6′ 0″)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2015(York City F. C.)Club Everton F. C.Liga Premier LeaguePosición DefensaDorsal(es) 22Goles en clubes 7Selección nacionalSelección ENG InglaterraDebut 2 d...

 

Barer Straße WappenStraße in München Barer Straße Neue Pinakothek Basisdaten Landeshauptstadt München Stadtbezirk Maxvorstadt Hist. Namen Sommerstraße, Wilhelminenstraße, Kasernstraße Name erhalten 1826[1] Anschluss­straßen Ottostraße, Nordendstraße Querstraßen Arcostraße, Karlstraße, Brienner Straße, Prinz-Ludwig-Straße, Gabelsbergerstraße, Marianne-von-Werefkin-Weg, Theresienstraße, Heßstraße, Schellingstraße, Zieblandstraße, Blütenstraße, Schnorrstraße...

 

彗星美人All About Eve1967年美国重印海报基本资料导演约瑟夫·曼凯维奇监制达里尔·F·扎纳克编剧约瑟夫·曼凯维奇原著The Wisdom of Eve[*]主演贝蒂·戴维斯安妮·巴克斯特乔治·桑德斯西莱斯特·霍尔姆配乐阿尔弗雷德·纽曼摄影米尔顿·克拉斯纳制片商二十世紀福斯片长138分钟产地 美國语言英语上映及发行上映日期 1950年10月13日 1951年6月7日发行商二十世纪福克斯 《彗星美人》

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) شركة بترول سنغافورةمعلومات عامةالتأسيس 1969 النوع عمل تجاري — سلسلة محطات الغاز المقر الرئيسي سنغافورة موقع الويب spc.com.sg المنظومة الاقتصاديةالشركة الأم بترو

 

Schweiz Schweizerische Botschaft in Deutschland Logo Staatliche Ebene bilateral Stellung der Behörde Botschaft Aufsichts­behörde(n) Eidgenössisches Departement für auswärtige Angelegenheiten Hauptsitz Deutschland Berlin Botschafter Paul Seger Website Schweizerische Botschaft in Deutschland Schweizerische Botschaft in Berlin-Tiergarten Schweizerische Botschaft mit dem Neubau auf der rechten Seite Fries am Altbau Die Schweizerische Botschaft Berlin ist der Sitz der diplomatischen...

 

Grenadian academic and activist (1943–2016) Franklyn HarveyBorn14 February 1943St Andrew's, GrenadaDied16 May 2016(2016-05-16) (aged 73)Ottawa, CanadaEducationPresentation CollegeAlma materUniversity of London; McGill UniversityOccupation(s)Academic and activistKnown forA founder of the New Jewel Movement Franklyn Harvey (14 February 1943 – 16 May 2016) was a Grenadian academic, activist and professional, a founder of the New Jewel Movement (NJM) and principal author of the...

العلاقات السنغالية البنينية السنغال بنين   السنغال   بنين تعديل مصدري - تعديل   العلاقات السنغالية البنينية هي العلاقات الثنائية التي تجمع بين السنغال وبنين.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة السنغ...

 

Lake in Switzerland Lake Thun ThunerseeAerial view of Lake ThunLake Thun ThunerseeShow map of Canton of BernLake Thun ThunerseeShow map of SwitzerlandLake Thun ThunerseeShow map of AlpsLocationCanton of BerneCoordinates46°41′N 7°43′E / 46.683°N 7.717°E / 46.683; 7.717Typefreshwater fjord, recent regulation[1]Primary inflowsAareKanderPrimary outflowsAareCatchment area2,500 km2 (970 sq mi)Basin countriesSwitzerlandMax. length17.5 ...

 

Prajurit asal Jawa di Filipina dari Kodeks Boxer Prajurit Maluku di Filipina dari Kodeks Boxer Kodeks Boxer, terkadang dikenal sebagai Manuskrip Manila, adalah sebuah manuskrip yang ditulis pada sekitar tahun 1590,[1] yang berisi gambar-gambar kelompok etnis di Filipina pada masa kontak awal mereka dengan bangsa Spanyol. Selain deskripsi dan catatan sejarah soal Filipina dan berbagai negara Timur Jauh lainnya, kodeks tersebut juga berisi tujuh puluh lima gambar berwarna dari para pend...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. InuyashikiPoster rilis teatrikalSutradara Shinsuke Sato Produser Hirotsugu Usui Ditulis oleh Hiroshi Hashimoto BerdasarkanInuyashikioleh Hiroya OkuPemeranNoritake KinashiTakeru SatohKanata HongōFumi NikaidōAyaka MiyoshiKatsuhisa NamaseMari HamadaPenata...

 

For other high schools using this name, see Lincoln High School. For similarly named high schools, see Abraham Lincoln High School. Public high school in Portland, Oregon Lincoln High SchoolAddress1600 Southwest Salmon StreetPortland, (Multnomah County), Oregon 97205United StatesCoordinates45°31′08″N 122°41′18″W / 45.51889°N 122.68830°W / 45.51889; -122.68830InformationTypePublicOpened1869School districtPortland Public SchoolsPrincipalPeyton Chapman[1&#...

 

То́ковая отсе́чка — вид релейной защиты, действие которой связано с повышением значения силы тока на защищаемом участке электрической сети. Содержание 1 Применение 2 Принцип действия 3 Особенности 4 Разновидности токовых отсечек 5 Литература Применение Электрический...

American actor This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Michael M. Ryan – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this template message) Michael M. RyanRyan in a publicity photo for Another World, 1965Born(1929-03-19)March 19, 1929Wichita, Kansas, U.S.Die...

 

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Adriano Gabiru Nazionalità  Brasile Altezza 172 cm Peso 68 kg Calcio Ruolo Centrocampista Termine carriera 2017 Carriera Giovanili 1995-1996 CSA Squadre di club1 1996-1997 CSA? (?)1998-1999 Athl. Paranaense33 (6)2000-2001→  Olympique Marsiglia14 (3)2001-2004 Athl. Paranaense8...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Spessart Ramp – news · newspapers · books · scholar · JSTOR (March 2018) (Learn how and when to remove this template message) Map of the Spessart Ramp with the current and former routing Push engine 151 032-0 at Laufach station Signal Ts 1 (cut helper engine of...

Island of the Bissagos Islands, Guinea-Bissau This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bolama Island – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) BolamaNative name: Ilha de BolamaAerial image of BolamaBolamaGeographyLocationAtlantic Oce...

 

Musical band The Guggenheim GrottoMick Lynch of Guggenheim Grotto performing at The Saint in Asbury Park, NJ, USA on 6 July 2012.Background informationOriginCounty Mayo, IrelandGenresFolk-popYears active2003–2013LabelsUnited For OpportunityMembersKevin May, Mick LynchPast membersShane Power The Guggenheim Grotto is a folk-pop band from, County Mayo, Ireland.[1] The members of The Guggenheim Grotto are Kevin May from Ballinrobe, and Mick Lynch from Westport. Guggenheim Grotto has a u...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!