In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel). The convex conjugate is widely used for constructing the dual problem in optimization theory, thus generalizing Lagrangian duality.
Let X {\displaystyle X} be a real topological vector space and let X ∗ {\displaystyle X^{*}} be the dual space to X {\displaystyle X} . Denote by
the canonical dual pairing, which is defined by ⟨ x ∗ , x ⟩ ↦ x ∗ ( x ) . {\displaystyle \left\langle x^{*},x\right\rangle \mapsto x^{*}(x).}
For a function f : X → R ∪ { − ∞ , + ∞ } {\displaystyle f:X\to \mathbb {R} \cup \{-\infty ,+\infty \}} taking values on the extended real number line, its convex conjugate is the function
whose value at x ∗ ∈ X ∗ {\displaystyle x^{*}\in X^{*}} is defined to be the supremum:
or, equivalently, in terms of the infimum:
This definition can be interpreted as an encoding of the convex hull of the function's epigraph in terms of its supporting hyperplanes.[1]
For more examples, see § Table of selected convex conjugates.
The convex conjugate and Legendre transform of the exponential function agree except that the domain of the convex conjugate is strictly larger as the Legendre transform is only defined for positive real numbers.
See this article for example.
Let F denote a cumulative distribution function of a random variable X. Then (integrating by parts), f ( x ) := ∫ − ∞ x F ( u ) d u = E [ max ( 0 , x − X ) ] = x − E [ min ( x , X ) ] {\displaystyle f(x):=\int _{-\infty }^{x}F(u)\,du=\operatorname {E} \left[\max(0,x-X)\right]=x-\operatorname {E} \left[\min(x,X)\right]} has the convex conjugate f ∗ ( p ) = ∫ 0 p F − 1 ( q ) d q = ( p − 1 ) F − 1 ( p ) + E [ min ( F − 1 ( p ) , X ) ] = p F − 1 ( p ) − E [ max ( 0 , F − 1 ( p ) − X ) ] . {\displaystyle f^{*}(p)=\int _{0}^{p}F^{-1}(q)\,dq=(p-1)F^{-1}(p)+\operatorname {E} \left[\min(F^{-1}(p),X)\right]=pF^{-1}(p)-\operatorname {E} \left[\max(0,F^{-1}(p)-X)\right].}
A particular interpretation has the transform f inc ( x ) := arg sup t t ⋅ x − ∫ 0 1 max { t − f ( u ) , 0 } d u , {\displaystyle f^{\text{inc}}(x):=\arg \sup _{t}t\cdot x-\int _{0}^{1}\max\{t-f(u),0\}\,du,} as this is a nondecreasing rearrangement of the initial function f; in particular, f inc = f {\displaystyle f^{\text{inc}}=f} for f nondecreasing.
The convex conjugate of a closed convex function is again a closed convex function. The convex conjugate of a polyhedral convex function (a convex function with polyhedral epigraph) is again a polyhedral convex function.
Declare that f ≤ g {\displaystyle f\leq g} if and only if f ( x ) ≤ g ( x ) {\displaystyle f(x)\leq g(x)} for all x . {\displaystyle x.} Then convex-conjugation is order-reversing, which by definition means that if f ≤ g {\displaystyle f\leq g} then f ∗ ≥ g ∗ . {\displaystyle f^{*}\geq g^{*}.}
For a family of functions ( f α ) α {\displaystyle \left(f_{\alpha }\right)_{\alpha }} it follows from the fact that supremums may be interchanged that
and from the max–min inequality that
The convex conjugate of a function is always lower semi-continuous. The biconjugate f ∗ ∗ {\displaystyle f^{**}} (the convex conjugate of the convex conjugate) is also the closed convex hull, i.e. the largest lower semi-continuous convex function with f ∗ ∗ ≤ f . {\displaystyle f^{**}\leq f.} For proper functions f , {\displaystyle f,}
For any function f and its convex conjugate f *, Fenchel's inequality (also known as the Fenchel–Young inequality) holds for every x ∈ X {\displaystyle x\in X} and p ∈ X ∗ {\displaystyle p\in X^{*}} :
Furthermore, the equality holds only when p ∈ ∂ f ( x ) {\displaystyle p\in \partial f(x)} . The proof follows from the definition of convex conjugate: f ∗ ( p ) = sup x ~ { ⟨ p , x ~ ⟩ − f ( x ~ ) } ≥ ⟨ p , x ⟩ − f ( x ) . {\displaystyle f^{*}(p)=\sup _{\tilde {x}}\left\{\langle p,{\tilde {x}}\rangle -f({\tilde {x}})\right\}\geq \langle p,x\rangle -f(x).}
For two functions f 0 {\displaystyle f_{0}} and f 1 {\displaystyle f_{1}} and a number 0 ≤ λ ≤ 1 {\displaystyle 0\leq \lambda \leq 1} the convexity relation
holds. The ∗ {\displaystyle {*}} operation is a convex mapping itself.
The infimal convolution (or epi-sum) of two functions f {\displaystyle f} and g {\displaystyle g} is defined as
Let f 1 , … , f m {\displaystyle f_{1},\ldots ,f_{m}} be proper, convex and lower semicontinuous functions on R n . {\displaystyle \mathbb {R} ^{n}.} Then the infimal convolution is convex and lower semicontinuous (but not necessarily proper),[2] and satisfies
The infimal convolution of two functions has a geometric interpretation: The (strict) epigraph of the infimal convolution of two functions is the Minkowski sum of the (strict) epigraphs of those functions.[3]
If the function f {\displaystyle f} is differentiable, then its derivative is the maximizing argument in the computation of the convex conjugate:
hence
and moreover
If for some γ > 0 , {\displaystyle \gamma >0,} g ( x ) = α + β x + γ ⋅ f ( λ x + δ ) {\displaystyle g(x)=\alpha +\beta x+\gamma \cdot f\left(\lambda x+\delta \right)} , then
Let A : X → Y {\displaystyle A:X\to Y} be a bounded linear operator. For any convex function f {\displaystyle f} on X , {\displaystyle X,}
where
is the preimage of f {\displaystyle f} with respect to A {\displaystyle A} and A ∗ {\displaystyle A^{*}} is the adjoint operator of A . {\displaystyle A.} [4]
A closed convex function f {\displaystyle f} is symmetric with respect to a given set G {\displaystyle G} of orthogonal linear transformations,
if and only if its convex conjugate f ∗ {\displaystyle f^{*}} is symmetric with respect to G . {\displaystyle G.}
The following table provides Legendre transforms for many common functions as well as a few useful properties.[5]
Series G - Reference, Information and Interdisciplinary Subjects Series