Cumulative distribution function

Cumulative distribution function for the exponential distribution
Cumulative distribution function for the normal distribution

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .[1]

Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by a right-continuous monotone increasing function (a càdlàg function) satisfying and .

In the case of a scalar continuous distribution, it gives the area under the probability density function from negative infinity to . Cumulative distribution functions are also used to specify the distribution of multivariate random variables.

Definition

The cumulative distribution function of a real-valued random variable is the function given by[2]: p. 77 

where the right-hand side represents the probability that the random variable takes on a value less than or equal to .

The probability that lies in the semi-closed interval , where , is therefore[2]: p. 84 

In the definition above, the "less than or equal to" sign, "≤", is a convention, not a universally used one (e.g. Hungarian literature uses "<"), but the distinction is important for discrete distributions. The proper use of tables of the binomial and Poisson distributions depends upon this convention. Moreover, important formulas like Paul Lévy's inversion formula for the characteristic function also rely on the "less than or equal" formulation.

If treating several random variables etc. the corresponding letters are used as subscripts while, if treating only one, the subscript is usually omitted. It is conventional to use a capital for a cumulative distribution function, in contrast to the lower-case used for probability density functions and probability mass functions. This applies when discussing general distributions: some specific distributions have their own conventional notation, for example the normal distribution uses and instead of and , respectively.

The probability density function of a continuous random variable can be determined from the cumulative distribution function by differentiating[3] using the Fundamental Theorem of Calculus; i.e. given , as long as the derivative exists.

The CDF of a continuous random variable can be expressed as the integral of its probability density function as follows:[2]: p. 86 

In the case of a random variable which has distribution having a discrete component at a value ,

If is continuous at , this equals zero and there is no discrete component at .

Properties

From top to bottom, the cumulative distribution function of a discrete probability distribution, continuous probability distribution, and a distribution which has both a continuous part and a discrete part.
Example of a cumulative distribution function with a countably infinite set of discontinuities.

Every cumulative distribution function is non-decreasing[2]: p. 78  and right-continuous,[2]: p. 79  which makes it a càdlàg function. Furthermore,

Every function with these three properties is a CDF, i.e., for every such function, a random variable can be defined such that the function is the cumulative distribution function of that random variable.

If is a purely discrete random variable, then it attains values with probability , and the CDF of will be discontinuous at the points :

If the CDF of a real valued random variable is continuous, then is a continuous random variable; if furthermore is absolutely continuous, then there exists a Lebesgue-integrable function such that for all real numbers and . The function is equal to the derivative of almost everywhere, and it is called the probability density function of the distribution of .

If has finite L1-norm, that is, the expectation of is finite, then the expectation is given by the Riemann–Stieltjes integral

CDF plot with two red rectangles, illustrating two inequalities

and for any , as well as as shown in the diagram (consider the areas of the two red rectangles and their extensions to the right or left up to the graph of ). In particular, we have In addition, the (finite) expected value of the real-valued random variable can be defined on the graph of its cumulative distribution function as illustrated by the drawing in the definition of expected value for arbitrary real-valued random variables.

Examples

As an example, suppose is uniformly distributed on the unit interval .

Then the CDF of is given by

Suppose instead that takes only the discrete values 0 and 1, with equal probability.

Then the CDF of is given by

Suppose is exponential distributed. Then the CDF of is given by

Here λ > 0 is the parameter of the distribution, often called the rate parameter.

Suppose is normal distributed. Then the CDF of is given by

Here the parameter is the mean or expectation of the distribution; and is its standard deviation.

A table of the CDF of the standard normal distribution is often used in statistical applications, where it is named the standard normal table, the unit normal table, or the Z table.

Suppose is binomial distributed. Then the CDF of is given by

Here is the probability of success and the function denotes the discrete probability distribution of the number of successes in a sequence of independent experiments, and is the "floor" under , i.e. the greatest integer less than or equal to .

Derived functions

Complementary cumulative distribution function (tail distribution)

Sometimes, it is useful to study the opposite question and ask how often the random variable is above a particular level. This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as

This has applications in statistical hypothesis testing, for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed. Thus, provided that the test statistic, T, has a continuous distribution, the one-sided p-value is simply given by the ccdf: for an observed value of the test statistic

In survival analysis, is called the survival function and denoted , while the term reliability function is common in engineering.

Properties
  • For a non-negative continuous random variable having an expectation, Markov's inequality states that[4]
  • As , and in fact provided that is finite.
    Proof:[citation needed]
    Assuming has a density function , for any Then, on recognizing and rearranging terms, as claimed.
  • For a random variable having an expectation, and for a non-negative random variable the second term is 0.
    If the random variable can only take non-negative integer values, this is equivalent to

Folded cumulative distribution

Example of the folded cumulative distribution for a normal distribution function with an expected value of 0 and a standard deviation of 1.

While the plot of a cumulative distribution often has an S-like shape, an alternative illustration is the folded cumulative distribution or mountain plot, which folds the top half of the graph over,[5][6] that is

where denotes the indicator function and the second summand is the survivor function, thus using two scales, one for the upslope and another for the downslope. This form of illustration emphasises the median, dispersion (specifically, the mean absolute deviation from the median[7]) and skewness of the distribution or of the empirical results.

Inverse distribution function (quantile function)

If the CDF F is strictly increasing and continuous then is the unique real number such that . This defines the inverse distribution function or quantile function.

Some distributions do not have a unique inverse (for example if for all , causing to be constant). In this case, one may use the generalized inverse distribution function, which is defined as

  • Example 1: The median is .
  • Example 2: Put . Then we call the 95th percentile.

Some useful properties of the inverse cdf (which are also preserved in the definition of the generalized inverse distribution function) are:

  1. is nondecreasing[8]
  2. if and only if
  3. If has a distribution then is distributed as . This is used in random number generation using the inverse transform sampling-method.
  4. If is a collection of independent -distributed random variables defined on the same sample space, then there exist random variables such that is distributed as and with probability 1 for all .[citation needed]

The inverse of the cdf can be used to translate results obtained for the uniform distribution to other distributions.

Empirical distribution function

The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function.[9]

Multivariate case

Definition for two random variables

When dealing simultaneously with more than one random variable the joint cumulative distribution function can also be defined. For example, for a pair of random variables , the joint CDF is given by[2]: p. 89 

where the right-hand side represents the probability that the random variable takes on a value less than or equal to and that takes on a value less than or equal to .

Example of joint cumulative distribution function:

For two continuous variables X and Y:

For two discrete random variables, it is beneficial to generate a table of probabilities and address the cumulative probability for each potential range of X and Y, and here is the example:[10]

given the joint probability mass function in tabular form, determine the joint cumulative distribution function.

Y = 2 Y = 4 Y = 6 Y = 8
X = 1 0 0.1 0 0.1
X = 3 0 0 0.2 0
X = 5 0.3 0 0 0.15
X = 7 0 0 0.15 0

Solution: using the given table of probabilities for each potential range of X and Y, the joint cumulative distribution function may be constructed in tabular form:

Y < 2 Y ≤ 2 Y ≤ 4 Y ≤ 6 Y ≤ 8
X < 1 0 0 0 0 0
X ≤ 1 0 0 0.1 0.1 0.2
X ≤ 3 0 0 0.1 0.3 0.4
X ≤ 5 0 0.3 0.4 0.6 0.85
X ≤ 7 0 0.3 0.4 0.75 1

Definition for more than two random variables

For random variables , the joint CDF is given by

Interpreting the random variables as a random vector yields a shorter notation:

Properties

Every multivariate CDF is:

  1. Monotonically non-decreasing for each of its variables,
  2. Right-continuous in each of its variables,

Not every function satisfying the above four properties is a multivariate CDF, unlike in the single dimension case. For example, let for or or and let otherwise. It is easy to see that the above conditions are met, and yet is not a CDF since if it was, then as explained below.

The probability that a point belongs to a hyperrectangle is analogous to the 1-dimensional case:[11]

Complex case

Complex random variable

The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form make no sense. However expressions of the form make sense. Therefore, we define the cumulative distribution of a complex random variables via the joint distribution of their real and imaginary parts:

Complex random vector

Generalization of Eq.4 yields as definition for the CDS of a complex random vector .

Use in statistical analysis

The concept of the cumulative distribution function makes an explicit appearance in statistical analysis in two (similar) ways. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The empirical distribution function is a formal direct estimate of the cumulative distribution function for which simple statistical properties can be derived and which can form the basis of various statistical hypothesis tests. Such tests can assess whether there is evidence against a sample of data having arisen from a given distribution, or evidence against two samples of data having arisen from the same (unknown) population distribution.

Kolmogorov–Smirnov and Kuiper's tests

The Kolmogorov–Smirnov test is based on cumulative distribution functions and can be used to test to see whether two empirical distributions are different or whether an empirical distribution is different from an ideal distribution. The closely related Kuiper's test is useful if the domain of the distribution is cyclic as in day of the week. For instance Kuiper's test might be used to see if the number of tornadoes varies during the year or if sales of a product vary by day of the week or day of the month.

See also

References

  1. ^ Deisenroth, Marc Peter; Faisal, A. Aldo; Ong, Cheng Soon (2020). Mathematics for Machine Learning. Cambridge University Press. p. 181. ISBN 9781108455145.
  2. ^ a b c d e f Park, Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3.
  3. ^ Montgomery, Douglas C.; Runger, George C. (2003). Applied Statistics and Probability for Engineers (PDF). John Wiley & Sons, Inc. p. 104. ISBN 0-471-20454-4. Archived (PDF) from the original on 2012-07-30.
  4. ^ Zwillinger, Daniel; Kokoska, Stephen (2010). CRC Standard Probability and Statistics Tables and Formulae. CRC Press. p. 49. ISBN 978-1-58488-059-2.
  5. ^ Gentle, J.E. (2009). Computational Statistics. Springer. ISBN 978-0-387-98145-1. Retrieved 2010-08-06.[page needed]
  6. ^ Monti, K. L. (1995). "Folded Empirical Distribution Function Curves (Mountain Plots)". The American Statistician. 49 (4): 342–345. doi:10.2307/2684570. JSTOR 2684570.
  7. ^ Xue, J. H.; Titterington, D. M. (2011). "The p-folded cumulative distribution function and the mean absolute deviation from the p-quantile" (PDF). Statistics & Probability Letters. 81 (8): 1179–1182. doi:10.1016/j.spl.2011.03.014.
  8. ^ Chan, Stanley H. (2021). Introduction to Probability for Data Science. Michigan Publishing. p. 18. ISBN 978-1-60785-746-4.
  9. ^ Hesse, C. (1990). "Rates of convergence for the empirical distribution function and the empirical characteristic function of a broad class of linear processes". Journal of Multivariate Analysis. 35 (2): 186–202. doi:10.1016/0047-259X(90)90024-C.
  10. ^ "Joint Cumulative Distribution Function (CDF)". math.info. Retrieved 2019-12-11.
  11. ^ "Archived copy" (PDF). www.math.wustl.edu. Archived from the original (PDF) on 22 February 2016. Retrieved 13 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)

Read other articles:

Tom Brady has 649 passing touchdowns, the most in NFL history.[1] NFL lists Quarterbacks Career passing touchdowns leaders Career passing yards leaders Career passer rating leaders Career completions/attempts Career wins Playoff records Annual passing touchdowns leaders Annual passing yards leaders Annual passer rating leaders Annual completion percentage leaders 5,000-yard seasons Consecutive starts Consecutive games with TD pass Starting quarterbacks by team: BUFMIANENYJ BALCINCLEPI...

 

Anacostia Estación del Metro de WashingtonUbicaciónCoordenadas 38°51′44″N 76°59′43″O / 38.862111111111, -76.995305555556Dirección 1101 Howard Road SELocalidad Washington D. C. 20020Datos de la estaciónCódigo F06Inauguración 28 de diciembre de 1991[1]​Pasajeros 2.696 millones (2010)[2]​Servicios Conexiones WMATA Metrobus (90, 94, A2, A4, A5, A6, A7, A8, A42, A46, A48, B2, P1, P2, P6, P18, U2, W2, W3, W4, W6, W8, W14)N.º de andenes 1 plataforma centr...

 

Zastava Skala Zastava 311 Visão geral Nomesalternativos Zastava 101 Produção 1971 - presente Fabricante Zastava Modelos relacionados Fiat 128 O Skala é um modelo compacto da Zastava.[1] O Commons possui uma categoria com imagens e outros ficheiros sobre Zastava Skala Referências ↑ «Best Cars Web Site - Páginas da História - Zastava Yugo». www1.uol.com.br. Consultado em 15 de janeiro de 2021  Este artigo sobre automóveis é um esboço. Você pode ajudar a Wikipédia expandindo...

Harimizu utaki (Kuil Harimizu), kuil Ryukyu di Miyakojima, Prefektur Okinawa. Agama Ryukyu, Ryukyu Shinto (琉球神道), Nirai Kanai Shinkou (ニライカナイ信仰), atau Utaki Shinkou (御嶽信仰) adalah sistem kepercayaan adat pribumi dari Kepulauan Ryukyu. Walaupun legenda-legenda dan tradisi-tradisi yang spesifik mungkin sedikit berbeda dari tempat ke tempat dan dari pulau ke pulau, agama Ryukyu umumnya ditandai dengan pemujaan leluhur (lebih tepat disebut penghormatan leluhur) dan ...

 

大阪市立西成図書館 大阪市立西成図書館施設情報管理運営 大阪市開館 1985年3月15日所在地 〒557-0041大阪府大阪市西成区岸里1-1-50位置 北緯34度38分4.4秒 東経135度29分41.9秒 / 北緯34.634556度 東経135.494972度 / 34.634556; 135.494972座標: 北緯34度38分4.4秒 東経135度29分41.9秒 / 北緯34.634556度 東経135.494972度 / 34.634556; 135.494972ISIL JP-1002181統計情報蔵書数 図

 

Season of television series The Legend of KorraSeason 3Book Three: ChangeRegion 1 DVD cover artCountry of originUnited StatesNo. of episodes13ReleaseOriginal networkNickelodeon (Episodes 1–8)Nick.com (Episodes 9–13)Original releaseJune 27 (2014-06-27) –August 22, 2014 (2014-08-22)Season chronology← PreviousBook Two: Spirits Next →Book Four: Balance List of episodes The third season of the animated television series The Legend of Korra, titled Book Three: Cha...

ΜέγαραMegaraGeneral informationLocationMegaraWest AtticaGreeceCoordinates37°59′28″N 23°21′40″E / 37.9910°N 23.3611°E / 37.9910; 23.3611Owned byGAIAOSE[1]Line(s)Airport–Patras railway[2]Platforms3Train operatorsHellenic TrainConstructionStructure typeat-gradePlatform levels2ParkingYesBicycle facilitiesNoAccessible Other informationStatusStaffedWebsitehttp://www.ose.gr/en/HistoryOpened27 September 2005Electrified25 kV 50 ...

 

Disaster in Afghanistan 2022 Salang Tunnel fireInterior shot of the tunnel taken in November 2013ExplosionDate18 December 2022Time20:30 AFT (UTC+04:30)LocationSalang Tunnel, AfghanistanCoordinates35°18′36″N 69°02′33″E / 35.3100°N 69.0425°E / 35.3100; 69.0425TypeFuel tanker explosionDeaths31Non-fatal injuries37 On 18 December 2022, a tanker truck exploded in the Salang Tunnel in Afghanistan, killing at least 31 people. Background The Salang Tunnel was b...

 

Railway line in Malaysia Shah Alam LineOverviewNative nameLRT Laluan Shah AlamStatusUnder ConstructionOwnerPrasarana MalaysiaLine number11 (sky blue)LocaleKlang ValleyTermini SA26  Johan Setia SA12  Dato Menteri (Phase 1) SA01  Bandar Utama (Phase 2)Stations25 (under construction)Websitelrt3.com.myServiceTypeMedium-capacity rail systemSystem Rapid KLOperator(s)Rapid RailDepot(s)Johan Setia DepotRolling stockCRRC Zhuzhou LRV25 three-cars trainsets[1]Width:...

Pour la théorie de Karl Popper, voir Karl Popper#Les trois mondes. Mao Zedong La théorie des trois mondes est une théorie élaborée par Mao Zedong, chef de la république populaire de Chine, au milieu des années 1970 à la suite de la rupture sino-soviétique[1]. Elle a été présentée par Deng Xiaoping devant l'ONU en 1974[2] et depuis a été fréquemment reprise dans le discours politique chinois[3]. Elle fait référence à trois « mondes » qui régissent la politique m...

 

For the U. S. Marine, see John E. Rudder. Dr John Rudder John Rudder, PhD, has studied the Australian Aboriginal languages, of Arnhem Land (Gupapuyngu) in the Northern Territory and the state of New South Wales (Wiradjuri), Australia. Work In 1964, Rudder went to Arnhem Land as a teacher, and later as a community development worker and educator among adult Indigenous Australians. In that time he learned to speak the language of the region, and analysed its grammar and syntax. He sought to gai...

 

Upazila in Chittagong, BangladeshKaptai Sub-DistrictUpazilaKaptai Lake on Karnaphuli RiverCoordinates: 22°30′N 92°13′E / 22.500°N 92.217°E / 22.500; 92.217Country BangladeshDivisionChittagongDistrictRangamatiArea • Total258.99 km2 (100.00 sq mi)Population (2011) • Total59,693 • Density230/km2 (600/sq mi)Time zoneUTC+6 (BST)Postal code4530Websitekaptai.rangamati.gov.bd Kaptai (Bengali: কাপ...

Печать Иллинойсаангл. Seal of Illinois Детали Утверждена 1868 год[1]  Медиафайлы на Викискладе Печать Иллинойса (англ. Seal of Illinois) — официальный символ штата Иллинойс, США. Содержание 1 История 2 Описание 3 См. также 4 Примечания 5 Ссылки История Первая печать штата была ...

 

КоммунаГрезакGrézac 45°36′ с. ш. 0°51′ з. д.HGЯO Страна  Франция Регион Пуату — Шаранта Департамент Шаранта Приморская Кантон Коз История и география Площадь 20,06 км²[1] Высота центра 28 м Часовой пояс UTC+1:00, летом UTC+2:00 Население Население 823 человека (2010) Ци...

 

1918 book by Franz Mehring Karl Marx: The Story of His Life Cover of the first editionAuthorFranz MehringOriginal titleKarl Marx. Geschichte seines LebensTranslatorEdward FitzgeraldCountryGermanyLanguageGermanSubjectKarl MarxPublished 1918 (in German) 1935 (Covici, Friede, Inc, in English) Media typePrint (Hardcover and Paperback)Pages608 (English edition)ISBN978-0415607261Website[1] Karl Marx: The Story of His Life (German: Karl Marx. Geschichte seines Lebens) is a 1918[1] ...

1942 film Outlaws of Boulder PassTheatrical release posterDirected bySam NewfieldWritten bySam Robins (original screenplay)Produced bySigmund NeufeldStarringSee belowCinematographyJack GreenhalghEdited byHolbrook N. ToddDistributed byProducers Releasing CorporationRelease date28 November 1942Running time58 minutesCountryUnited StatesLanguageEnglish Outlaws of Boulder Pass is a 1942 American Western film directed by Sam Newfield. The film stars George Houston as the Lone Rider and Al St. John ...

 

اسطفان باسيلي معلومات شخصية تاريخ الميلاد 1900 تاريخ الوفاة 1990 مواطنة مصر  الحياة العملية المهنة سياسي  الحزب حزب الوفد  اللغة الأم اللهجة المصرية  اللغات العربية،  واللهجة المصرية  تعديل مصدري - تعديل   هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا....

 

Questa voce sull'argomento calciatori paraguaiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jesús Medina Nazionalità  Paraguay Altezza 178 cm Peso 70 kg Calcio Ruolo Centrocampista Squadra  Spartak Mosca Carriera Giovanili 2010-2016 Libertad Squadre di club1 2012-2017 Libertad74 (17)2018-2022 New York City108 (23)[1]2022-2023 CSKA Mosca35 (9)2023- Spart...

Duilio Beretta Ávalos Duilio Beretta ÁvalosPaís Perú PerúResidencia Arequipa, Perú PerúFecha de nacimiento 25 de febrero de 1992 (31 años)Lugar de nacimiento Arequipa, PerúAltura 1,78 m (5′ 10″)Peso 79 kg (174 lb)Profesional desde 2008Brazo hábil Diestro; revés a dos manosDinero ganado $ 68,282IndividualesRécord de su carrera 5–6Títulos de su carrera 1 (ITF juniors)Mejor ranking 364 (7 de noviembre de 2011)Resultados de Grand SlamAbierto de Australia -Roland ...

 

宮崎県出身の人物一覧(みやざきけんしゅっしんのじんぶついちらん)は、Wikipedia日本語版に記事が存在する宮崎県出身の人物の一覧表である。 公人 閣僚 各国務大臣 小村壽太郎(外務大臣/外交官〔ポーツマス会議日本全権〕、貴族院議員):日南市 上原勇作(陸軍大臣/軍人〔陸軍大将〕):都城市 財部彪(海軍大臣/軍人〔海軍大将〕):都城市 小山長規(建...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!