Almost everywhere

The function 1/x is differentiable and continuous almost everywhere, more precisely, everywhere except at x = 0.

In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory.

More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero,[1][2] or equivalently, if the set of elements for which the property holds is conull. In cases where the measure is not complete, it is sufficient that the set be contained within a set of measure zero. When discussing sets of real numbers, the Lebesgue measure is usually assumed unless otherwise stated.

The term almost everywhere is abbreviated a.e.;[3] in older literature p.p. is used, to stand for the equivalent French language phrase presque partout.[4]

A set with full measure is one whose complement is of measure zero. In probability theory, the terms almost surely, almost certain and almost always refer to events with probability 1 not necessarily including all of the outcomes. These are exactly the sets of full measure in a probability space.

Occasionally, instead of saying that a property holds almost everywhere, it is said that the property holds for almost all elements (though the term almost all can also have other meanings).

Definition

If is a measure space, a property is said to hold almost everywhere in if there exists a measurable set with , and all have the property .[5] Another common way of expressing the same thing is to say that "almost every point satisfies ", or that "for almost every , holds".

It is not required that the set has measure zero; it may not be measurable. By the above definition, it is sufficient that be contained in some set that is measurable and has measure zero. However, this technicality vanishes when considering a complete measure space: if is complete then exists with measure zero if and only if is measurable with measure zero.

Properties

  • If property holds almost everywhere and implies property , then property holds almost everywhere. This follows from the monotonicity of measures.
  • If is a finite or a countable sequence of properties, each of which holds almost everywhere, then their conjunction holds almost everywhere. This follows from the countable sub-additivity of measures.
  • By contrast, if is an uncountable family of properties, each of which holds almost everywhere, then their conjunction does not necessarily hold almost everywhere. For example, if is Lebesgue measure on and is the property of not being equal to (i.e. is true if and only if ), then each holds almost everywhere, but the conjunction does not hold anywhere.

As a consequence of the first two properties, it is often possible to reason about "almost every point" of a measure space as though it were an ordinary point rather than an abstraction.[citation needed] This is often done implicitly in informal mathematical arguments. However, one must be careful with this mode of reasoning because of the third bullet above: universal quantification over uncountable families of statements is valid for ordinary points but not for "almost every point".

Examples

  • If f : RR is a Lebesgue integrable function and almost everywhere, then for all real numbers with equality if and only if almost everywhere.
  • If f : [a, b] → R is a monotonic function, then f is differentiable almost everywhere.
  • If f : RR is Lebesgue measurable and for all real numbers , then there exists a set E (depending on f) such that, if x is in E, the Lebesgue mean converges to f(x) as decreases to zero. The set E is called the Lebesgue set of f. Its complement can be proved to have measure zero. In other words, the Lebesgue mean of f converges to f almost everywhere.
  • A bounded function f : [a, b] → R is Riemann integrable if and only if it is continuous almost everywhere.
  • As a curiosity, the decimal expansion of almost every real number in the interval [0, 1] contains the complete text of Shakespeare's plays, encoded in ASCII; similarly for every other finite digit sequence, see Normal number.

Definition using ultrafilters

Outside of the context of real analysis, the notion of a property true almost everywhere is sometimes defined in terms of an ultrafilter. An ultrafilter on a set X is a maximal collection F of subsets of X such that:

  1. If UF and UV then VF
  2. The intersection of any two sets in F is in F
  3. The empty set is not in F

A property P of points in X holds almost everywhere, relative to an ultrafilter F, if the set of points for which P holds is in F.

For example, one construction of the hyperreal number system defines a hyperreal number as an equivalence class of sequences that are equal almost everywhere as defined by an ultrafilter.

The definition of almost everywhere in terms of ultrafilters is closely related to the definition in terms of measures, because each ultrafilter defines a finitely-additive measure taking only the values 0 and 1, where a set has measure 1 if and only if it is included in the ultrafilter.

See also

References

  1. ^ Weisstein, Eric W. "Almost Everywhere". mathworld.wolfram.com. Retrieved 2019-11-19.
  2. ^ Halmos, Paul R. (1974). Measure theory. New York: Springer-Verlag. ISBN 0-387-90088-8.
  3. ^ "Definition of almost everywhere | Dictionary.com". www.dictionary.com. Retrieved 2019-11-19.
  4. ^ Ursell, H. D. (1932-01-01). "On the Convergence Almost Everywhere of Rademacher's Series and of the Bochnerfejér Sums of a Function almost Periodic in the Sense of Stepanoff". Proceedings of the London Mathematical Society. s2-33 (1): 457–466. doi:10.1112/plms/s2-33.1.457. ISSN 0024-6115.
  5. ^ "Properties That Hold Almost Everywhere - Mathonline". mathonline.wikidot.com. Retrieved 2019-11-19.

Bibliography

  • Billingsley, Patrick (1995). Probability and measure (3rd ed.). New York: John Wiley & Sons. ISBN 0-471-00710-2.

Read other articles:

Zahořany Gemeente in Tsjechië Situering Regio (kraj) Pilsen  District (okres) Domažlice Coördinaten 49° 26′ NB, 12° 60′ OL Algemeen Oppervlakte 21,16 km² Inwoners 963 (28.8.2006) Overig Postcode(s) 344 01 tot 345 47 Website [obeczahorany.cz Officiële website] Foto's Portaal    Tsjechië Zahořany (Duits: Sahorschan) is een Tsjechische gemeente in de regio Pilsen, en maakt deel uit van het district Domažlice. Zahořany telt 963 inwoners. Mediabesta...

 

 

Бокс, до 51 кгна XXXII Олімпійських іграх Місце проведенняРегоку КокугіканДати25 липня 2021 — 7 серпня 2021Учасників25 з 25 країнПризери  Стойка Крастева  Болгарія Бусеназ Чакироглу  Туреччина Тсукімі Намікі  Японія Хуан Сяовень  Кит

 

 

  此条目的主題是澳門的三號風球。关于香港的三號風球,請見「三號強風信號」。 三號風球的信號形狀 日間晚間 三號風球(葡萄牙語:Sinal n.º 3[1]),是澳門特別行政區的熱帶氣旋警告信號。普遍市民稱它為「三號信號」或者「三號波」[註 1],高一級的信號為八號風球,低一級為一號風球。[2] 受超強颱風小犬影響,最近一次三號風球於2023年10月9

Jeremy Bentham, padre del utilitarismo, una de las principales teorías consecuencialistas. En ética, el consecuencialismo, también conocido como ética teleológica (del griego τέλος telos, 'fin', en el sentido de finalidad) se refiere a todas aquellas teorías de la ética normativa que sostienen que la corrección o incorrección de nuestras acciones está determinada por el valor o desvalor que ocurre debido a ellas. Para las teorías consecuencialistas, una acción se juzga correc...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) مصفوفة إب

 

 

De Nationale Portefeuillemaatschappij, afgekort NPM (Frans: Compagnie Nationale à Portefeuille, afgekort CNP) is een Belgische holding die door de familie Frère wordt gecontroleerd. De hoofdzetel bevindt zich in Gerpinnes, waar ook andere bedrijven van het Frère-imperium gevestigd zijn. Activiteiten De Nationale Portefeuillemaatschappij werd door Albert Frère beheerd. Via een paar niet beursgenoteerde tussenholdings heeft NPM samen met Power Financial Corporation van de Canadese familie D...

Budiman SudjatmikoM.A., M.Phil.Anggota Dewan Perwakilan RakyatRepublik IndonesiaMasa jabatan1 Oktober 2009 – 30 September 2019Perolehan suara96.830 (2009)68.861 (2014)Daerah pemilihanJawa Tengah VIII Informasi pribadiLahirBudiman Sudjatmiko10 Maret 1970 (umur 53)Majenang, Cilacap, Jawa TengahKebangsaanIndonesiaPartai politikPartai Rakyat Demokratik (1996–2001)Partai Demokrasi Indonesia Perjuangan (2004–2023)Independen (Sejak 2023)Suami/istriKesi Yovana ​(m.&#...

 

 

Central nuclear del sur de Ucrania LocalizaciónPaís UcraniaCoordenadas 47°49′00″N 31°13′00″E / 47.81666667, 31.21666667AdministraciónPropietario EnergoatomOperador EnergoatomHistoriaObras Unidad 1: 1 de agosto de 1976Unidad 2: 1 de julio de 1981Unidad 3: 1 de noviembre de 1984 EnergíaPotencia 2850 megavatios[editar datos en Wikidata] La central nuclear del sur de Ucrania (en ucraniano: Південноукраїнська АЕС), también conocida como...

 

 

العلاقات المالطية الميانمارية مالطا ميانمار   مالطا   ميانمار تعديل مصدري - تعديل   العلاقات المالطية الميانمارية هي العلاقات الثنائية التي تجمع بين مالطا وميانمار.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقار...

Linguistic region of India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hindi Belt – news · newspapers · books · scholar · JSTOR (December 2015) (Learn how and when to remove this template message) Region in IndiaHindi BeltRegionArea (red) where various languages considered by the census as Hindi are spok...

 

 

Political party in Mandatory Palestine Brit HaBirionim ברית הבריוניםHistorical leadersAbba AhimeirUri-Zvi GreenbergYehoshua YeivinFounded1930Dissolved1933HeadquartersJerusalemIdeologyRevisionist ZionismRevisionist MaximalismFascismFascist corporatismAnti-communismPolitical positionFar-rightReligionJudaismColors  Black (official)  Blue (informal) Part of a series onFascism Themes Actual idealism Aestheticization of politics Anti-communism Anti-intellectualism Ant...

 

 

When You BelieveSingel oleh Mariah Carey dan Whitney Houstondari album The Prince of Egypt, #1's, dan My Love Is Your LoveArti judulSaat Kau PercayaDirilis2 November 1998 (1998-11-02)Format 7 inci CD kaset DirekamAgustus 1998Genre Gospel soul R&B Durasi5:01 (versi album)4:39 (versi singel)Label DreamWorks Arista Columbia Pencipta Stephen Schwartz Kenneth Edmons ProduserBabyfaceKronologi singel Mariah Carey Sweetheart (1998) When You Believe (1998) I Still Believe (1999) Kronolog...

Perang Serbia–Utsmaniyah (1876–78)Bagian dari Krisis Timur BesarPertempuran Morava – Agustus 1876Tanggal30 Juni 1876 — 3 Maret 1878(1 tahun, 8 bulan dan 3 hari)LokasiKepangeranan SerbiaHasil Kemenangan SerbiaPihak terlibat Kepangeranan Serbia  Kesultanan UtsmaniyahTokoh dan pemimpin Mikhail ChernyayevFrantišek ZachĐura HorvatovićMihailo IlićRanko AlimpićMilojko Lešjanin Abdülkerim NadirOsman NuriSüleyman HüsnüMehmed AliKekuatan 89.000–100.000 90.00...

 

 

Sporting event delegationPalestine at the2020 Summer OlympicsFlag of PalestineIOC codePLENOCPalestine Olympic CommitteeWebsitewww.poc.ps (in Arabic)in TokyoJuly 23, 2021 (2021-07-23) – August 8, 2021 (2021-08-08)Competitors5 in 4 sportsFlag bearers (opening)Dania NourMohammed HamadaFlag bearer (closing)N/AMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)19962000200420082012201620202024 Palestine competed at the 2...

 

 

Location mentioned in the Hebrew Bible This article is about the place. For the Jewish festival, see Sukkot. The name Sukkot (Succoth) appears in a number of places in the Hebrew Bible as a location: Depiction of the Hebrews camping in Succoth Egypt An Egyptian Sukkot is the second of the stations of the Exodus. According to the Hebrew bible, God had sent Moses to rescue the Israelites from captivity by an unnamed Pharaoh - who later allowed the Israelites to leave Egypt, and they journeyed f...

2010 single by Solange Fuck the IndustryDance Remixes digital coverSingle by Solangefrom the album Sol-Angel and the Hadley St. Dreams (2015 edition) ReleasedMay 25, 2010 (2010-05-25)Recorded2008GenreHip hop soulLength3:48LabelMusic WorldSongwriter(s)Solange KnowlesKanye WestGeorge Clinton, Jr.Prince Phillip MitchellCarlton RidenhourEric SadlerHank ShockleeProducer(s)Kanye WestSolange singles chronology T.O.N.Y. (2009) Fuck the Industry (2010) Losing You (2012) Fuck the Industr...

 

 

American politician from Colorado For other people with the same name, see Frank Evans (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2013) (Learn how and when to remove this template message) Frank Edward EvansMember of the U.S. House of Representativesfrom Colorado's 3rd districtIn officeJanuary 3, 1965 – Janu...

 

 

Naval blockade of Adriatic, 1993–96 Operation Sharp GuardPart of NATO intervention in BosniaNATO ships enforcing the blockadeObjectiveBlockade former YugoslaviaDate15 June 1993 – 2 October 1996Executed by Western European Union NATO vteNATO intervention inBosnia and Herzegovina Maritime Monitor Sky Monitor Maritime Guard Deny Flight Sharp Guard Deliberate Force IFOR SFOR Operation Sharp Guard was a multi-year joint naval blockade in the Adriatic Sea by NATO and the Western Europ...

Sir Herbert FitzherbertVice Admiral Herbert FitzherbertBorn(1885-08-10)10 August 1885Kingswear, Totnes, DevonDied30 October 1958(1958-10-30) (aged 73)Allegiance United Kingdom British IndiaService/branch Royal Navy Royal Indian NavyYears of service1900–1943RankAdmiralCommands heldHMS Coventry (1926) HMS Victory (1932) HMS Devonshire (1934) Flag Officer Commanding, Royal Indian Navy (1937) Flag Officer-in-Charge, Tunisia (1943)Battles/warsFirst World WarSecond W...

 

 

Economic sector in Bangladesh Development of agricultural output of Bangladesh in 2019 US$ since 1961 As watercourses such as canals, both natural and manmade, and rivers contribute as the vital source of irrigation, their spread across the country is attributed as a key factor for the economic and geographic extent of agriculture in Bangladesh. Photographed is a process of irrigation underway in Comilla, enabled by a pump that is extracting water from the Gumti seen in the background. Agricu...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!