That is, is a non-empty family of subsets of that is closed under non-empty finite intersections.[nb 1]
The importance of π-systems arises from the fact that if two probability measures agree on a π-system, then they agree on the 𝜎-algebra generated by that π-system. Moreover, if other properties, such as equality of integrals, hold for the π-system, then they hold for the generated 𝜎-algebra as well. This is the case whenever the collection of subsets for which the property holds is a 𝜆-system. π-systems are also useful for checking independence of random variables.
This is desirable because in practice, π-systems are often simpler to work with than 𝜎-algebras. For example, it may be awkward to work with 𝜎-algebras generated by infinitely many sets So instead we may examine the union of all 𝜎-algebras generated by finitely many sets This forms a π-system that generates the desired 𝜎-algebra. Another example is the collection of all intervals of the real line, along with the empty set, which is a π-system that generates the very important Borel 𝜎-algebra of subsets of the real line.
Definitions
A π-system is a non-empty collection of sets that is closed under non-empty finite intersections, which is equivalent to containing the intersection of any two of its elements.
If every set in this π-system is a subset of then it is called a π-system on
For any non-empty family of subsets of there exists a π-system called the π-system generated by , that is the unique smallest π-system of containing every element of
It is equal to the intersection of all π-systems containing and can be explicitly described as the set of all possible non-empty finite intersections of elements of
A non-empty family of sets has the finite intersection property if and only if the π-system it generates does not contain the empty set as an element.
Examples
For any real numbers and the intervals form a π-system, and the intervals form a π-system if the empty set is also included.
Whilst it is true that any 𝜎-algebra satisfies the properties of being both a π-system and a 𝜆-system, it is not true that any π-system is a 𝜆-system, and moreover it is not true that any π-system is a 𝜎-algebra. However, a useful classification is that any set system which is both a 𝜆-system and a π-system is a 𝜎-algebra. This is used as a step in proving the π-𝜆 theorem.
Let be a 𝜆-system, and let be a π-system contained in The π-𝜆 theorem[1] states that the 𝜎-algebra generated by is contained in
The π-𝜆 theorem can be used to prove many elementary measure theoretic results. For instance, it is used in proving the uniqueness claim of the Carathéodory extension theorem for 𝜎-finite measures.[2]
The π-𝜆 theorem is closely related to the monotone class theorem, which provides a similar relationship between monotone classes and algebras, and can be used to derive many of the same results. Since π-systems are simpler classes than algebras, it can be easier to identify the sets that are in them while, on the other hand, checking whether the property under consideration determines a 𝜆-system is often relatively easy. Despite the difference between the two theorems, the π-𝜆 theorem is sometimes referred to as the monotone class theorem.[1]
Example
Let be two measures on the 𝜎-algebra and suppose that is generated by a π-system If
for all and
then
This is the uniqueness statement of the Carathéodory extension theorem for finite measures. If this result does not seem very remarkable, consider the fact that it usually is very difficult or even impossible to fully describe every set in the 𝜎-algebra, and so the problem of equating measures would be completely hopeless without such a tool.
Idea of the proof[2]
Define the collection of sets
By the first assumption, and agree on and thus By the second assumption, and it can further be shown that is a 𝜆-system. It follows from the π-𝜆 theorem that and so That is to say, the measures agree on
π-Systems in probability
π-systems are more commonly used in the study of probability theory than in the general field of measure theory. This is primarily due to probabilistic notions such as independence, though it may also be a consequence of the fact that the π-𝜆 theorem was proven by the probabilist Eugene Dynkin. Standard measure theory texts typically prove the same results via monotone classes, rather than π-systems.
Equality in distribution
The π-𝜆 theorem motivates the common definition of the probability distribution of a random variable in terms of its cumulative distribution function. Recall that the cumulative distribution of a random variable is defined as
whereas the seemingly more general law of the variable is the probability measure
where is the Borel 𝜎-algebra. The random variables and (on two possibly different probability spaces) are equal in distribution (or law), denoted by if they have the same cumulative distribution functions; that is, if The motivation for the definition stems from the observation that if then that is exactly to say that and agree on the π-system which generates and so by the example above:
A similar result holds for the joint distribution of a random vector. For example, suppose and are two random variables defined on the same probability space with respectively generated π-systems and The joint cumulative distribution function of is
However, and Because
is a π-system generated by the random pair the π-𝜆 theorem is used to show that the joint cumulative distribution function suffices to determine the joint law of In other words, and have the same distribution if and only if they have the same joint cumulative distribution function.
In the theory of stochastic processes, two processes are known to be equal in distribution if and only if they agree on all finite-dimensional distributions; that is, for all
The proof of this is another application of the π-𝜆 theorem.[3]
Independent random variables
The theory of π-system plays an important role in the probabilistic notion of independence. If and are two random variables defined on the same probability space then the random variables are independent if and only if their π-systems satisfy for all and
which is to say that are independent. This actually is a special case of the use of π-systems for determining the distribution of
Example
Let where are iid standard normal random variables. Define the radius and argument (arctan) variables
Then and are independent random variables.
To prove this, it is sufficient to show that the π-systems are independent: that is, for all and
Confirming that this is the case is an exercise in changing variables. Fix and then the probability can be expressed as an integral of the probability density function of
Additionally, a semiring is a π-system where every complement is equal to a finite disjoint union of sets in
A semialgebra is a semiring where every complement is equal to a finite disjoint union of sets in are arbitrary elements of and it is assumed that
δ-ring – Ring closed under countable intersections
Field of sets – Algebraic concept in measure theory, also referred to as an algebra of sets
Ideal (set theory) – Non-empty family of sets that is closed under finite unions and subsets
Ceratotherium Ceratotherium simum Taxonomische indeling Rijk:Animalia (Dieren)Stam:Chordata (Chordadieren)Klasse:Mammalia (Zoogdieren)Orde:Perissodactyla (Onevenhoevigen)Familie:Rhinocerotidae (Neushoorns) Geslacht Ceratotherium Afbeeldingen op Wikimedia Commons Ceratotherium op Wikispecies Portaal Biologie Zoogdieren Ceratotherium is een geslacht van zoogdieren uit de familie van de Rhinocerotidae (Neushoorns). Soort en ondersoorten Ceratotherium simum Burchell, 1817 (Witte neus...
Integrantes de EWKE con Katherine Maher, presidenta de la Fundación Wikimedia, en 2019 Euskal Wikilarien Kultura Elkartea (en euskera, 'Asociación Cultural de Wikipedistas Vascos') es una asociación sin ánimo de lucro fundada en 2016 para la promoción y desarrollo de la Wikipedia en euskera, y por extensión, de los wikiproyectos hermanos en este idioma.[1][2] Su actual presidente es Luistxo Fernandez. En 2017 firmaron junto con el Gobierno Vasco el convenio Kalitatezko 1.0...
Портрет Ганни Закревської Творець: Шевченко Тарас ГригоровичЧас створення: 1843Розміри: 51 × 39,6Матеріал: полотноТехніка: ОліяЖанр: портретЗберігається: КиївМузей: Національний музей Тараса Шевченка «Портрет Ганни Закревської» — художній твір Тараса Шевченка Зміст 1...
Putri Elisabeth dari Hesse dan oleh RhineIstri Adipati Agung Elizabeth Feodorovna dari RusiaKelahiran(1864-11-01)1 November 1864Bessungen, Hesse, Konfederasi JermanKematian18 Juli 1918(1918-07-18) (umur 53)Alapaevsk, Republik Sosialis Federasi Soviet RusiaPemakamanGereja Maria Magdalena, Getsemani, Yerusalem, IsraelWangsaHesse-DarmstadtNama lengkapInggris: Elizabeth Alexandra Louise AliceJerman: Elisabeth Alexandra Luise AlixRusia: Elizabeth Feodorovna RomanovaAyahLouis IV, Adipati Agung...
Subway station in Cambridge, Massachusetts KendallOutbound platform with historic timeline and images from nearby Massachusetts Institute of TechnologyGeneral informationLocationMain Street at BroadwayCambridge, MassachusettsCoordinates42°21′44″N 71°05′10″W / 42.3623°N 71.0862°W / 42.3623; -71.0862Line(s)Cambridge TunnelPlatforms2 side platformsTracks2Connections MBTA bus: 64, 68, 85, CT2 EZRideConstructionStructure typeUndergroundBicycle facilities58 ...
Se ha sugerido que este artículo o sección sea fusionado con Geohintonia.Una vez que hayas realizado la fusión de contenidos, pide la fusión de historiales aquí.Uso de esta plantilla: {{sust:Fusionar|Nombre de hasta otros veinte artículos para fusionar separados por |}} Geohintonia mexicana Estado de conservaciónCasi amenazado (UICN)TaxonomíaReino: PlantaeSubreino: TracheobiontaDivisión: MagnoliophytaClase: EudicotyledoneaeSubclase: CaryophyllidaeOrden: CaryophyllalesFamilia: ...
Ця стаття є кандидатом на вилучення. Ознайомитися та долучитися до обговорення цієї номінації можна на сторінці Вікіпедія:Статті-кандидати на вилучення/13 серпня 2023. Доки воно триває, Ви можете працювати над покращенням цієї статті, але не прибирайте це повідомлення. Для о
Das Magazin Fachgebiet Kultur Sprache Deutsch Erstausgabe 1954 Erscheinungsweise monatlich Verkaufte Auflage ca. 45.000 Exemplare Chefredakteur Andreas Lehmann Herausgeber Till Kaposty-Bliss, Andreas Lehmann Weblink www.dasmagazin.de ISSN (Print) 0460-5047 Das Magazin ist eine Zeitschrift mit den Schwerpunkten Kultur und Lebensart. Es ist eine der wenigen DDR-Zeitschriften, die auch nach der Wiedervereinigung noch erscheinen. Inhaltsverzeichnis 1 Geschichte 2 Inhalte 3 Literatur 4 Weblinks 5 ...
Richard Stallman, perintis Gerakan perangkat lunak bebas, saat acara Wikimania 2005 Perangkat lunak bebas atau peranti lunak bebas (Inggris: free software) adalah istilah yang diciptakan oleh Richard Stallman dan Free Software Foundation [1] yang mengacu kepada perangkat lunak yang bebas untuk digunakan, dipelajari dan diubah serta dapat disalin dengan atau tanpa modifikasi, atau dengan beberapa keharusan untuk memastikan bahwa kebebasan yang sama tetap dapat dinikmati oleh pengguna-p...
For the hospital named Park Hospital that operated near New York City's Central Park from 1914-1922, see New York University Hospital. Hospital in New York, United StatesCentral Park HospitalShown in New York CityGeographyLocationCentral Park, New York City, New York, United StatesCoordinates40°46′52″N 73°57′58″W / 40.781°N 73.966°W / 40.781; -73.966OrganizationCare systemMilitaryFundingGovernment hospitalTypeMilitaryHistoryFormer name(s)U.S. General Hospit...
Historic building in Exeter, England Benedictine Priory of St NicholasSt Nicholas Priory, ExeterReligionAffiliationRoman CatholicEcclesiastical or organizational statusevents venueStatusevents and private hireLocationLocationExeter, EnglandLocation within Devon and the United KingdomGeographic coordinates50°43′18″N 3°32′06″W / 50.7218°N 3.5350°W / 50.7218; -3.5350ArchitectureTypePrioryCompleted1087 The Benedictine Priory of St Nicholas or just St Nicholas P...
Ця стаття чи розділ висвітлює один чи декілька запланованих чи очікуваних фільмів. Зміст може докорінно змінюватись у міру наближення дати випуску фільму та появи нової інформації. Проєкт ДжорджтаунЖанр фільм-трилер і горорРежисер M.A. Fortind і Joshua John MillerdПродюсер B...
United States Army Air Forces soldier Ben KurokiBen Kuroki in flight jacketNickname(s)Most Honorable Son, Sad Saki[a]Born(1917-05-16)May 16, 1917Gothenburg, NebraskaDiedSeptember 1, 2015(2015-09-01) (aged 98)Camarillo, CaliforniaAllegiance United StatesService/branch United States Army Air ForcesYears of service1941–1946RankTechnical SergeantBattles/warsWorld War IIAwardsDistinguished Service MedalDistinguished Flying Cross (×3)Air Medal with oak leaf clusters (×5) Ben K...
1991 soundtrack album by James HornerAn American Tail: Fievel Goes WestSoundtrack album by James HornerReleasedNovember 12, 1991 (1991-11-12)GenreOriginal soundtrackFilm scoreLength56:38LabelMCAProducerJames HornerJames Horner chronology The Rocketeer(1991) An American Tail: Fievel Goes West(1991) Thunderheart(1992) An American Tail: Fievel Goes West (Music from the Motion Picture Soundtrack) is the soundtrack and score album to the 1991 film An American Tail: Fievel Go...
Analı kızlı soupDehydrated analı kızlı soupTypeSoupPlace of originTurkeyRegion or stateMalatya, Kahramanmaraş, Diyarbakır, Gaziantep, Tarsus, Adana Media: Analı kızlı soup Analı kızlı soup is a soup from Turkey (Adana, Tarsus, Gaziantep, Kahramanmaraş, Malatya) which includes meatballs, tomato, bulgur, and chickpeas. 'Analı kızlı' means, literally, 'with daughters and mothers', daughters being the chickpeas, and mothers the bulgur balls (i.e., meatballs covered wit...
2014 single by Avicii This article is about the Avicii song. For other uses, see Nights (disambiguation) and The Night (disambiguation). The NightsSingle by Aviciifrom the EP The Days / Nights EP Released1 December 2014 (2014-12-01)GenreProgressive housefolktronicaLength2:56 (album version)LabelPRMDUniversalSongwriter(s)Tim BerglingNicholas FurlongGabriel BenjaminJordan SuecofJohn FeldmannProducer(s)AviciiArash PournouriAvicii singles chronology Divine Sorrow (2014) The Nig...
Логотип DIGIC DIGIC, иногда DiG!C (англ. Digital Imaging Integrated Circuit[1] — интегральная микросхема для цифровой съёмки, либо англ. Digital Imaging Core — ядро цифровой съёмки) — специализированная интегральная схема (процессор), разработанная компанией Canon и используемая ею в цифровой фот...
Species of fly Tabanus punctifer Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Diptera Family: Tabanidae Subfamily: Tabaninae Tribe: Tabanini Genus: Tabanus Species: T. punctifer Binomial name Tabanus punctiferOsten Sacken, 1876[1] Tabanus punctifer, commonly known as the western horse fly, is a species of horse fly in the family Tabanidae.[2][3] This species of horse fly is approximately 20.5 mm (0.8 in) lo...
1-Up Studio Inc.Nama asli1-UPスタジオ株式会社Nama latin1-Up Sutajio KabushikigaishaSebelumnyaBrownie Brown(2000–2013)JenisAnak perusahaan dari NintendoIndustriVideo gamesDidirikan30 Juni 2000; 23 tahun lalu (2000-06-30)PendiriKameoka ShinichiKouji TsudaKantorpusatTokyo, JapanTokohkunciPresidentGen KadoiProdukMother 3Mana seriesSuper Mario seriesKaryawan52[1] (2019)IndukNintendo[1]Situs web1-up-studio.jp 1-Up Studio Inc. (1‐UPスタジオ株式会社 Wan...
Place in Centre-Est Region, Burkina FasoFinglaCountry Burkina FasoRegionCentre-Est RegionProvinceBoulgou ProvinceDepartmentBéguédo DepartmentPopulation (2005 est.) • Total2,118 Fingla is a town in the Béguédo Department of Boulgou Province in south-eastern Burkina Faso. As of 2005, the town has a population of 2,118.[1] References ^ Burkinabé government inforoute communale Archived 2008-10-11 at the Wayback Machine vte Boulgou ProvinceCapital: TenkodogoBagr...