Lifting theory

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar.[1] The theory was further developed by Dorothy Maharam (1958)[2] and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961).[3] Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas.[4] Lifting theory continued to develop since then, yielding new results and applications.

Definitions

A lifting on a measure space is a linear and multiplicative operator which is a right inverse of the quotient map

where is the seminormed Lp space of measurable functions and is its usual normed quotient. In other words, a lifting picks from every equivalence class of bounded measurable functions modulo negligible functions a representative— which is henceforth written or or simply — in such a way that and for all and all

Liftings are used to produce disintegrations of measures, for instance conditional probability distributions given continuous random variables, and fibrations of Lebesgue measure on the level sets of a function.

Existence of liftings

Theorem. Suppose is complete.[5] Then admits a lifting if and only if there exists a collection of mutually disjoint integrable sets in whose union is In particular, if is the completion of a σ-finite[6] measure or of an inner regular Borel measure on a locally compact space, then admits a lifting.

The proof consists in extending a lifting to ever larger sub-σ-algebras, applying Doob's martingale convergence theorem if one encounters a countable chain in the process.

Strong liftings

Suppose is complete and is equipped with a completely regular Hausdorff topology such that the union of any collection of negligible open sets is again negligible – this is the case if is σ-finite or comes from a Radon measure. Then the support of can be defined as the complement of the largest negligible open subset, and the collection of bounded continuous functions belongs to

A strong lifting for is a lifting such that on for all in This is the same as requiring that[7] for all open sets in

Theorem. If is σ-finite and complete and has a countable basis then admits a strong lifting.

Proof. Let be a lifting for and a countable basis for For any point in the negligible set let be any character[8] on that extends the character of Then for in and in define: is the desired strong lifting.

Application: disintegration of a measure

Suppose and are σ-finite measure spaces ( positive) and is a measurable map. A disintegration of along with respect to is a slew of positive σ-additive measures on such that

  1. is carried by the fiber of over , i.e. and for almost all
  2. for every -integrable function in the sense that, for -almost all in is -integrable, the function is -integrable, and the displayed equality holds.

Disintegrations exist in various circumstances, the proofs varying but almost all using strong liftings. Here is a rather general result. Its short proof gives the general flavor.

Theorem. Suppose is a Polish space[9] and a separable Hausdorff space, both equipped with their Borel σ-algebras. Let be a σ-finite Borel measure on and a measurable map. Then there exists a σ-finite Borel measure on and a disintegration (*). If is finite, can be taken to be the pushforward[10] and then the are probabilities.

Proof. Because of the polish nature of there is a sequence of compact subsets of that are mutually disjoint, whose union has negligible complement, and on which is continuous. This observation reduces the problem to the case that both and are compact and is continuous, and Complete under and fix a strong lifting for Given a bounded -measurable function let denote its conditional expectation under that is, the Radon-Nikodym derivative of[11] with respect to Then set, for every in To show that this defines a disintegration is a matter of bookkeeping and a suitable Fubini theorem. To see how the strongness of the lifting enters, note that and take the infimum over all positive in with it becomes apparent that the support of lies in the fiber over

References

  1. ^ von Neumann, John (1931). "Algebraische Repräsentanten der Funktionen "bis auf eine Menge vom Maße Null"". Journal für die reine und angewandte Mathematik (in German). 1931 (165): 109–115. doi:10.1515/crll.1931.165.109. MR 1581278.
  2. ^ Maharam, Dorothy (1958). "On a theorem of von Neumann". Proceedings of the American Mathematical Society. 9 (6): 987–994. doi:10.2307/2033342. JSTOR 2033342. MR 0105479.
  3. ^ Ionescu Tulcea, Alexandra; Ionescu Tulcea, Cassius (1961). "On the lifting property. I." Journal of Mathematical Analysis and Applications. 3 (3): 537–546. doi:10.1016/0022-247X(61)90075-0. MR 0150256.
  4. ^ Ionescu Tulcea, Alexandra; Ionescu Tulcea, Cassius (1969). Topics in the theory of lifting. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 48. New York: Springer-Verlag. MR 0276438. OCLC 851370324.
  5. ^ A subset is locally negligible if it intersects every integrable set in in a subset of a negligible set of is complete if every locally negligible set is negligible and belongs to
  6. ^ i.e., there exists a countable collection of integrable sets – sets of finite measure in – that covers the underlying set
  7. ^ are identified with their indicator functions.
  8. ^ A character on a unital algebra is a multiplicative linear functional with values in the coefficient field that maps the unit to 1.
  9. ^ A separable space is Polish if its topology comes from a complete metric. In the present situation it would be sufficient to require that is Suslin, that is, is the continuous Hausdorff image of a Polish space.
  10. ^ The pushforward of under also called the image of under and denoted is the measure on defined by for in .
  11. ^ is the measure that has density with respect to

Read other articles:

2005 American TV series or program Warm SpringsGenreBiographyDramaWritten byMargaret NagleDirected byJoseph SargentStarringKenneth Branagh Cynthia Nixon Kathy Bates Tim Blake Nelson Jane Alexander David PaymerTheme music composerBruce BroughtonCountry of originUnited StatesOriginal languageEnglishProductionProducerChrisann VergesCinematographyRobbie GreenbergEditorMichael BrownRunning time121 minutesProduction companiesHBO FilmsMark Gordon ProductionsThe Mark Gordon CompanyOriginal ...

 

ІссанлаIssanlas Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Ларжантьєр Кантон Кукурон Код INSEE 07105 Поштові індекси 07510 Координати 44°45′57″ пн. ш. 4°00′44″ сх. д.H G O Висота 1119 - 1374 м.н.р.м. Площа 28,4 км² Населення 100 (01-2020[1]) Густота 4,12 ос./км² Р

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Alycia Ferryana – berita · surat kabar · buku · cendekiawan · JSTOR Alycia FerryanaLahirAlycia Ferryana Mamahit22 Mei 1998 (umur 25)JakartaKebangsaanIndonesiaNama lainCiaPekerjaanPenyanyiPenari...

Koordinat: 5°08′15″S 119°32′53″E / 5.1376003°S 119.5481758°E / -5.1376003; 119.5481758 Bonto BungaDesaKantor Desa Bonto Bunga di Dusun ManjallingNegara IndonesiaProvinsiSulawesi SelatanKabupatenMarosKecamatanMoncongloeKode pos90564[1]Kode Kemendagri73.09.13.2004 Luas10,02 km² tahun 2017Jumlah penduduk1.355 jiwa tahun 2017Kepadatan135,23 jiwa/km² tahun 2017Jumlah RT10Jumlah RW5 Bonto Bunga (Ejaan Van Ophuijsen: Bonto Boenga; Lontara Bugis &...

 

American software programmer Thomas Bushnell, BSGBushnell at JPL in 2011Born (1967-12-13) December 13, 1967 (age 55)Albuquerque, New Mexico[1]NationalityAmericanOther namesformerly Michael BushnellEducationPhD in Philosophy, University of California, Irvine.Known forGNU HurdThomas BushnellScientific careerThesisPeter Abelard's conception of the goodDoctoral advisorBonnie Kent Websitetb.becket.net Thomas Bushnell, BSG, formerly known as Michael Bushnell (born December 13...

 

Bus service in Oakland and San Leandro, California TempoA southbound bus at Downtown San Leandro stationOverviewOperatorAC TransitGarageDivision 4Vehicle27 New Flyer XDE60[1]Began serviceAugust 9, 2020 (2020-08-09)Predecessors1, 1RRouteLocaleOakland, San LeandroStartUptown Transit CenterViaInternational BoulevardEndSan Leandro BART stationLength9.5 mi (15.3 km)Stations34ServiceFrequency10 minutes (6 am–7 pm)15 minutes (7 pm–midnight)30–60 minutes (midnig...

Hannibal Serie de televisión Creado por Bryan FullerBasado en los personajes de Red Dragon de Thomas HarrisProtagonistas Hugh Dancy Mads Mikkelsen Caroline Dhavernas Hettienne Park Laurence Fishburne Scott Thompson Aaron Abrams Gillian AndersonIdioma(s) original(es) InglésN.º de temporadas 3N.º de episodios 39 (lista de episodios)ProducciónProductor(es) ejecutivo(s) Bryan FullerMartha De LaurentiisSidonie DumasChristophe RiandeeKatie O'ConnellElisa RothSara ColletonDavid SladeChris ...

 

2000 film by Harold Ramis BedazzledTheatrical release posterDirected byHarold RamisScreenplay by Larry Gelbart Harold Ramis Peter Tolan Based onBedazzledby Peter Cook &Dudley MooreProduced by Trevor Albert Harold Ramis Starring Brendan Fraser Elizabeth Hurley Frances O'Connor CinematographyBill PopeEdited byCraig HerringMusic byDavid NewmanProductioncompanies Regency Enterprises Kirch Media Distributed by20th Century FoxRelease dates October 20, 2000 (2000-10-20) (Unite...

 

2007 live album by Ian McNabbHow We Live: At the PhilharmonicLive album by Ian McNabbReleased6 December 2007RecordedJune 2007GenrePopLabelFairfield RecordsProducerRobert Ian McNabb How We Live: At the Philharmonic is the title of Ian McNabb's second live album.[1] The album was culled from two June 2007 shows at Liverpool's Philharmonic Hall. [2][3] [4] Track listing They Settled For Less Than They Wanted [4:24] The Absentee [5:31] Believer of Me [3:57]...

Devil's Tower Torre del Diablo Bagian dari Benteng di Gibraltar Devil's Tower Road, Gibraltar Lokasi asli Devil's Tower di Gibraltar. Jenis Menara pengawas Koordinat 36°08′44″N 5°20′29″W / 36.145649°N 5.341438°W / 36.145649; -5.341438Koordinat: 36°08′44″N 5°20′29″W / 36.145649°N 5.341438°W / 36.145649; -5.341438 Diruntuhkan 1940 Kondisisaat ini Diruntuhkan Denah Devil's Tower dan Mill Tower tahun 1727 (Spanyol). Devil's T...

 

Austrian pianist (1927–2019) Paul Badura-SkodaBorn(1927-10-06)6 October 1927Vienna, AustriaDied25 September 2019(2019-09-25) (aged 91)ViennaOccupation(s)Pianist, musicologist, authorYears active1947–2019Spouse Eva Halfar ​ ​(m. 1951, separation)​[1]PartnerElisabeth Vilatte[2]Children4, including the pianist Michael Badura-Skoda (1964–2001)[3] Paul Badura-Skoda (6 October 1927 – 25 September 2019) was an A...

 

قصر محيرسمعلومات عامةنوع المبنى قصر محاط بحديقة حضريةالمنطقة الإدارية محافظة الأحساء البلد  السعودية معلومات أخرىالإحداثيات 25°15′54″N 49°20′41″E / 25.2649°N 49.3448°E / 25.2649; 49.3448تعديل - تعديل مصدري - تعديل ويكي بيانات قصر محيرس هو قصر يقع في محافظة الاحساء، شرق المملك...

For the English cricketer, see Andy Sutton (cricketer). Ice hockey player Andy Sutton Sutton with the Oilers in 2012Born (1975-03-10) March 10, 1975 (age 48)London, Ontario, Canada[1][2]Height 6 ft 6 in (198 cm)Weight 245 lb (111 kg; 17 st 7 lb)Position DefenceShot LeftPlayed for San Jose SharksMinnesota WildAtlanta ThrashersNew York IslandersOttawa SenatorsAnaheim DucksEdmonton OilersNHL Draft UndraftedPlaying career 1998–2012 And...

 

S.K. Vit' Jorjia TbilisiCalcio Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Verde, nero Dati societari Città Tbilisi Nazione  Georgia Confederazione UEFA Federazione GFF Campionato Erovnuli Liga 2 Fondazione 1968 Presidente Guram Rukhadze Allenatore  ? Stadio Stadio Shevardeni(4 000 posti) Sito web www.witgeorgia.ge Palmarès Titoli nazionali 2 Campionati georgiani Trofei nazionali 1 Coppa di Georgia1 Supercoppa di Georgia Si invita a seguire il modello di v...

 

The Cashew business in Kollam is based in the eponymous city, which is known as the Cashew Capital of the World.[1] Kollam is the largest processed cashew exporter in the world. As of 2011[update] there were more than 600 cashew processing units in the city. About 800,000 tonnes of raw cashews are imported to the city for processing every year.[2] 80% of India's export quality cashew kernels were prepared in Kollam.[3][4] Kollam has remained the cashew ...

Dolores Veintimilla Información personalNacimiento 12 de julio de 1829Quito Ecuador EcuadorFallecimiento 23 de mayo del 1857 (27 años)Cuenca Ecuador EcuadorCausa de muerte SuicidioNacionalidad EcuatorianaFamiliaPadres José Veintimilla Jerónima Carrión y AnteparaCónyuge Sixto A. GalindoInformación profesionalOcupación EscritoraMovimiento RomanticismoGéneros Ensayo, poesíaObras notables QuejasFirma [editar datos en Wikidata] Dolores Veintimilla de Galindo (Quito, 1...

 

Arenabianca Osnovni podaci Država  Italija Regija Campania Provincija Salerno Stanovništvo Stanovništvo (2011) 532 Geografija Koordinate 40°17′44″N 15°41′26″E / 40.29569°N 15.69056°E / 40.29569; 15.69056 Nadmorska visina 652 m ArenabiancaArenabianca (Italije) Arenabianca je naselje u Italiji u provinciji Salerno, u regiji Campania. Prema proceni iz 2011. u naselju je živelo 532 stanovnika.[1][2] Naselje se nalazi na nadmorskoj visi...

 

Lavender Hill Mob beralih ke halaman ini. Untuk band Kanada, lihat Lavender Hill Mob (band). The Lavender Hill MobPoster InggrisSutradaraCharles CrichtonProduserMichael BalconDitulis olehT.E.B. ClarkePemeranAlec GuinnessStanley HollowayPenata musikGeorges AuricSinematograferDouglas SlocombePenyuntingSeth HoltDistributorGFD (Inggris)Tanggal rilis15 Juni 1951 (Inggris)Durasi81 menitNegaraBritania RayaBahasaInggris The Lavender Hill Mob adalah sebuah film komedi tahun 1951 dari Ealing Stud...

This article is about the municipality. For the family name, see Nussbaum. Municipality in Rhineland-Palatinate, GermanyNusbaum Municipality Coat of armsLocation of Nusbaum within Eifelkreis Bitburg-Prüm district Nusbaum Show map of GermanyNusbaum Show map of Rhineland-PalatinateCoordinates: 49°54′58″N 6°20′38″E / 49.91611°N 6.34389°E / 49.91611; 6.34389CountryGermanyStateRhineland-PalatinateDistrictEifelkreis Bitburg-Prüm Municipal assoc.SüdeifelGovernm...

 

Intermarché-Wanty Información del equipo Código UCI WIL (2008-2010)VWA (2011)ACC (2012)AJW (2013)WGG (2014-2019)CWG (2020)IWG (2021-2022)ICW (2023)IWA (2024) País Bélgica Bélgica Fundación 2008 Disciplina Ciclismo en ruta Categoría Continental (2008-2010)UCI ProTeam (2011-2020)UCI WorldTeam (2021-) Web http://wanty-groupegobert.be/ Dirección Gerente Jean-François Bourlart Director general Aike Visbeek Director deportivo Dimitri Claeys Director deportivo Frederik Veuchelen Dire...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!