Random measure

In probability theory, a random measure is a measure-valued random element.[1][2] Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

Definition

Random measures can be defined as transition kernels or as random elements. Both definitions are equivalent. For the definitions, let be a separable complete metric space and let be its Borel -algebra. (The most common example of a separable complete metric space is .)

As a transition kernel

A random measure is a (a.s.) locally finite transition kernel from an abstract probability space to .[3]

Being a transition kernel means that

  • For any fixed , the mapping
is measurable from to
  • For every fixed , the mapping
is a measure on

Being locally finite means that the measures

satisfy for all bounded measurable sets and for all except some -null set

In the context of stochastic processes there is the related concept of a stochastic kernel, probability kernel, Markov kernel.

As a random element

Define

and the subset of locally finite measures by

For all bounded measurable , define the mappings

from to . Let be the -algebra induced by the mappings on and the -algebra induced by the mappings on . Note that .

A random measure is a random element from to that almost surely takes values in [3][4][5]

Intensity measure

For a random measure , the measure satisfying

for every positive measurable function is called the intensity measure of . The intensity measure exists for every random measure and is a s-finite measure.

Supporting measure

For a random measure , the measure satisfying

for all positive measurable functions is called the supporting measure of . The supporting measure exists for all random measures and can be chosen to be finite.

Laplace transform

For a random measure , the Laplace transform is defined as

for every positive measurable function .

Basic properties

Measurability of integrals

For a random measure , the integrals

and

for positive -measurable are measurable, so they are random variables.

Uniqueness

The distribution of a random measure is uniquely determined by the distributions of

for all continuous functions with compact support on . For a fixed semiring that generates in the sense that , the distribution of a random measure is also uniquely determined by the integral over all positive simple -measurable functions .[6]

Decomposition

A measure generally might be decomposed as:

Here is a diffuse measure without atoms, while is a purely atomic measure.

Random counting measure

A random measure of the form:

where is the Dirac measure and are random variables, is called a point process[1][2] or random counting measure. This random measure describes the set of N particles, whose locations are given by the (generally vector valued) random variables . The diffuse component is null for a counting measure.

In the formal notation of above a random counting measure is a map from a probability space to the measurable space (, ). Here is the space of all boundedly finite integer-valued measures (called counting measures).

The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters.[7]

See also

References

  1. ^ a b Kallenberg, O., Random Measures, 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN 0-12-394960-2 MR854102. An authoritative but rather difficult reference.
  2. ^ a b Jan Grandell, Point processes and random measures, Advances in Applied Probability 9 (1977) 502-526. MR0478331 JSTOR A nice and clear introduction.
  3. ^ a b Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 1. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  4. ^ Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 526. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  5. ^ Daley, D. J.; Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Probability and its Applications. doi:10.1007/b97277. ISBN 0-387-95541-0.
  6. ^ Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 52. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  7. ^ "Crisan, D., Particle Filters: A Theoretical Perspective, in Sequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN 0-387-95146-6

Read other articles:

This is a list of United States Marine Corps divisions. Active Official Name Insignia Headquarters 1st Marine Division Marine Corps Base Camp Pendleton California 2nd Marine Division Marine Corps Base Camp Lejeune North Carolina 3rd Marine Division Marine Corps Base Camp Smedley D. Butler Okinawa, Japan 4th Marine Division New Orleans, Louisiana See also United States Marine Corps Judge Advocate Division List of United States Marine Corps aircraft wings List of United States Marine Corps logi...

 

National highway in India For the old National Highway 47, see National Highway 544 (India) and National Highway 66 (India). National Highway 47Map of the National Highway in redRoute informationLength1,006 km (625 mi)Major junctionsWest endBamanboreEast endNagpur LocationCountryIndiaStatesGujarat, Madhya Pradesh, Maharashtra Highway system Roads in India Expressways National State Asian ← NH 27→ NH 44 National Highway 47 (NH 47) is a primary National Highway in I...

 

У Вікіпедії є статті про інші значення цього терміна: Марль. Марль Marl —  місто  — Вид Марль Герб Координати: 51°40′ пн. ш. 7°07′ сх. д. / 51.667° пн. ш. 7.117° сх. д. / 51.667; 7.117 Країна  Німеччина Земля Північний Рейн-Вестфалія Округ Мюнст

Colbert presenteert een academielid aan Lodewijk XIV van Frankrijk Een academielid is iemand die volledig lid is van een literaire of wetenschappelijke academie. Het (prestigieuze) lidmaatschap van een dergelijke academie wordt meestal verkregen door verkiezing of benoeming, men kan zichzelf niet aanmelden. In Nederland bijvoorbeeld heeft de Koninklijke Nederlandse Akademie van Wetenschappen maximaal 200 gewone leden onder de 65 jaar, die voor het leven benoemd worden. Gebruik in het (voormal...

 

Series of protests, mostly in Madrid This article needs to be updated. Please help update this article to reflect recent events or newly available information. (December 2023) 2023 Spanish protestsPart of 2023 Spanish government formationDemonstration in Plaza de Colón on 29 October 2023 (top); protest against the amnesty in Calle de Ferraz on 6 November (bottom)Date29 October 2023 – present(1 month and 5 days)LocationSpain, primarily MadridCaused by Negotiations to form a new go...

 

1991 film by James Cameron Terminator 2: Judgment DayTheatrical release posterDirected byJames CameronWritten by James Cameron William Wisher Produced byJames CameronStarring Arnold Schwarzenegger Linda Hamilton Robert Patrick CinematographyAdam GreenbergEdited by Conrad Buff Mark Goldblatt Richard A. Harris Music byBrad FiedelProductioncompanies Carolco Pictures Pacific Western Productions Lightstorm Entertainment Le Studio Canal+ Distributed byTri-Star PicturesRelease dates July 1,...

  关于同名或類似名的其它條目描述,請見「替身」。 替身王傑的录音室专辑发行日期1998年8月录制时间1997年类型國語流行音樂唱片公司波麗佳音王傑专辑年表 起點(1997年) 替身(1998年) Giving(2000年) 《替身》為臺灣歌手王傑的第二十九張個人專輯,也是第二十一張國語專輯,於1998年8月在馬來西亞出版,由波麗佳音公司發行。 專輯簡介 王傑在波麗佳音的最後...

 

French historian (1924–2018) Xavier de Montclos Xavier de Montclos (30 August 1924 – 21 September 2018) was a 20th–21st-century French historian, a specialist of the history of religions and particularly Christianity.[1] Career In 1965, he defended his thesis devoted to Lavigerie, le Saint-Siège et l'Église, de l'avènement de Pie IX à l'avènement de Léon XIII, 1846-1978. In 1966, he supported a complementary thesis on Le toast d'Alger, documents, 1890-1891. He is emeritus ...

 

Zoo in Tromsø, Norway PolariaPolaria seen from the northDate openedMay 1998 (1998-05)LocationTromsø, NorwayWebsitewww.polaria.no Polaria is the world's most northerly aquarium. It is located in Tromsø, in northern Norway. Rather than a mainly scientific aquarium such as the one in Bergen in the Norwegian midlands, Polaria, which opened in May 1998, is designed to be an educational experience, with particular emphasis on displays for children. Most of the displays focus on the nor...

Bachkantate Lobet den Herrn, alle seine Heerscharen BWV: Anhang 5 Anlass: 24. Geburtstag von Prinz Leopold Entstehungsjahr: 1718 Entstehungsort: Leipzig Gattung: Kantate Text Christian Friedrich Hunold Liste der Bachkantaten St.-Jakob-Kirche, wo die Kantate Lobet den Herrn, alle seine Heerscharen im Dezember 1718 aufgeführt wurde. Lobet den Herrn, alle seine Heerscharen (BWV Anhang 5) ist eine kirchliche Kantate von Johann Sebastian Bach, die er anlässlich des 24. Geburtstags von Prinz...

 

Kentucky's gun law Location of Kentucky in the United States Gun laws in Kentucky regulate the sale, possession, and use of firearms and ammunition in the Commonwealth of Kentucky in the United States. Summary table Subject/Law Long Guns Hand Guns Relevant Statutes Notes State permit required to purchase? No No Firearm registration? No No Assault weapon law? No No Magazine capacity restriction? No No Owner license required? No No Permit required for concealed carry? N/A No KRS § 237.109KRS ...

 

For the larger local government district, see Metropolitan Borough of Knowsley. Village and Civil Parish in EnglandKnowsley VillageVillage and Civil ParishKnowsley village greenKnowsley VillageLocation within MerseysidePopulation11,343 (2001 Census)[1]OS grid referenceSJ435951Civil parishKnowsleyMetropolitan boroughKnowsleyMetropolitan countyMerseysideRegionNorth WestCountryEnglandSovereign stateUnited KingdomPost townPRESCOTPostcode districtL34Diall...

2004 single by Bump of ChickenOnly Lonely Gloryオンリー ロンリー グローリーSingle by Bump of Chickenfrom the album Yggdrasil B-sideSuimin JikanReleasedJuly 7, 2004Recorded???GenreRockLength??:??LabelToy's FactoryTFCC-89109Songwriter(s)Fujiwara MotooProducer(s)???Bump of Chicken singles chronology Arue (2004) Only Lonely Gloryオンリー ロンリー グローリー (2004) Sharin no Uta (2004) Only Lonely Glory (オンリー ロンリー グローリー) is the eighth single by B...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) وضحا وابن عجلان كتابة أحمد عويدي العبادي إخراج غسان جبري سيناريو خالد حمدي بطولة يوسف شعبان سلوى سعيد نب...

 

Not to be confused with Edgware tube station. Former railway station in England EdgwareMap of Edgware from 1937 showing the LNER station (bottom) and Underground station (top)EdgwareLocation of Edgware in Greater LondonLocationEdgwareOwnerGreat Northern RailwayNumber of platforms1Key dates22 August 1867Opened11 September 1939Closed to passengers1 June 1964Closed to goodsOther informationWGS8451°36′45″N 0°16′37″W / 51.61238°N 0.27700°W / 51.61238; -0.27700&#...

Berikut merupakan daftar Perdana Menteri Portugal. Perdana Menteri Sebelum Liberalisme Foto Nama Periode   Miguel de Vasconcelos 1635 - 1 Desember 1640   Francisco de Lucena 1640 - 1642   Pedro Vieira da Silva 1642-1656   Gaspar Severim de Faria 1656 - 12 Juli 1662 Luís de Vasconcelos e Sousa,Count of Castelo Melhordan Count of Calheta 12 Juli 1662 - 9 September 1667   ... 9 September 1667 - 24 September 1704   Diogo de Mendonça Corte-Real 24 September 1704 - 9...

 

Elena-Gabriela RuseRuse, 2021Kebangsaan RumaniaTempat tinggalBucharest, RomaniaLahir6 November 1997 (umur 26)Bucharest, RomaniaTinggi173 m (567 ft 7 in)Tipe pemainRight-handed (two-handed backhand)Total hadiahUS$ 1,205,953TunggalRekor (M–K)235–147 (61.52%)Gelar1 WTA, 6 ITFPeringkat tertinggiNo. 51 (23 Mei 2022)Peringkat saat iniNo. 117 (12 Desember 2022)Hasil terbaik di Grand Slam (tunggal)Australia Terbuka2R (2022)Prancis Terbuka1R (2022)Wimbledon1R (2018, 2...

 

Public high school in Valrico, Florida, United StatesBloomingdale Senior High SchoolAddress1700 East Bloomingdale AvenueValrico, Florida 33596United StatesCoordinates27°53′40″N 82°15′20″W / 27.89444°N 82.25556°W / 27.89444; -82.25556InformationTypePublic high schoolMottoDiscover Tomorrow TodayEstablished1987School districtHillsborough County Public SchoolsSuperintendentAddison Davis[2]CEEB code101778PrincipalMarcos Rodriguez[3]Teaching staff...

Капская винная змея Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:...

 

Japanese politician Kensei Hasegawa (長谷川 憲正, Hasegawa Kensei, born January 1, 1943) is a Japanese politician of the People's New Party, a member of the House of Councillors in the Diet (national legislature). A native of Kumagaya, Saitama and graduate of the University of Tokyo, he worked at the Ministry of Posts and Telecommunications from 1967 to 2003. He was elected for the first time in 2004. Kensei Hasegawa References 政治家情報 〜長谷川 憲正〜. ザ・選挙 (in Jap...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!