The first proof of the theorem was given by Carlo Severini in 1910:[1][2] he used the result as a tool in his research on series of orthogonal functions. His work remained apparently unnoticed outside Italy, probably due to the fact that it is written in Italian, appeared in a scientific journal with limited diffusion and was considered only as a means to obtain other theorems. A year later Dmitri Egorov published his independently proved results,[3] and the theorem became widely known under his name: however, it is not uncommon to find references to this theorem as the Severini–Egoroff theorem. The first mathematicians to prove independently the theorem in the nowadays common abstract measure space setting were Frigyes Riesz (1922, 1928), and in Wacław Sierpiński (1928):[4] an earlier generalization is due to Nikolai Luzin, who succeeded in slightly relaxing the requirement of finiteness of measure of the domain of convergence of the pointwise converging functions in the ample[further explanation needed] paper (Luzin 1916).[5] Further generalizations were given much later by Pavel Korovkin, in the paper (Korovkin 1947), and by Gabriel Mokobodzki in the paper (Mokobodzki 1970).
Formal statement and proof
Statement
Let (fn) be a sequence of M-valued measurable functions, where M is a separable metric space, on some measure space (X,Σ,μ), and suppose there is a measurable subsetA ⊆ X, with finite μ-measure, such that (fn) converges μ-almost everywhere on A to a limit function f. The following result holds: for every ε > 0, there exists a measurable subsetB of A such that μ(B) < ε, and (fn) converges to f uniformly on A \ B.
Here, μ(B) denotes the μ-measure of B. In words, the theorem says that pointwise convergence almost everywhere on A implies the apparently much stronger uniform convergence everywhere except on some subset B of arbitrarily small measure. This type of convergence is also called almost uniform convergence.
Discussion of assumptions and a counterexample
The hypothesis μ(A) < ∞ is necessary. To see this, it is simple to construct a counterexample when μ is the Lebesgue measure: consider the sequence of real-valued indicator functions defined on the real line. This sequence converges pointwise to the zero function everywhere but does not converge uniformly on for any set B of finite measure: a counterexample in the general -dimensionalreal vector space can be constructed as shown by Cafiero (1959, p. 302).
The separability of the metric space is needed to make sure that for M-valued, measurable functions f and g, the distance d(f(x), g(x)) is again a measurable real-valued function of x.
Proof
Fix .
For natural numbers n and k, define the set En,k by the union
These sets get smaller as n increases, meaning that En+1,k is always a subset of En,k, because the first union involves fewer sets. A point x, for which the sequence (fm(x)) converges to f(x), cannot be in every En,k for a fixed k, because fm(x) has to stay closer to f(x) than 1/k eventually. Hence by the assumption of μ-almost everywhere pointwise convergence on A,
for every k. Since A is of finite measure, we have continuity from above; hence there exists, for each k, some natural number nk such that
For x in this set we consider the speed of approach into the 1/k-neighbourhood of f(x) as too slow. Define
as the set of all those points x in A, for which the speed of approach into at least one of these 1/k-neighbourhoods of f(x) is too slow. On the set difference we therefore have uniform convergence. Explicitly, for any , let , then for any , we have on all of .
Nikolai Luzin's generalization of the Severini–Egorov theorem is presented here according to Saks (1937, p. 19).
Statement
Under the same hypothesis of the abstract Severini–Egorov theorem suppose that A is the union of a sequence of measurable sets of finite μ-measure, and (fn) is a given sequence of M-valued measurable functions on some measure space (X,Σ,μ), such that (fn) converges μ-almost everywhere on A to a limit function f, then A can be expressed as the union of a sequence of measurable sets H, A1, A2,... such that μ(H) = 0 and (fn) converges to f uniformly on each set Ak.
Proof
It is sufficient to consider the case in which the set A is itself of finite μ-measure: using this hypothesis and the standard Severini–Egorov theorem, it is possible to define by mathematical induction a sequence of sets {Ak}k=1,2,... such that
and such that (fn) converges to f uniformly on each set Ak for each k. Choosing
then obviously μ(H) = 0 and the theorem is proved.
If (fn) is a sequence of M-valued measurable functions converging μ-almost everywhere on to a limit function f, then there exists a subsetA′ of A such that 0 < μ(A) − μ(A′) < ε and where the convergence is also uniform.
^According to Straneo (1952, p. 101), Severini, while acknowledging his own priority in the publication of the result, was unwilling to disclose it publicly: it was Leonida Tonelli who, in the note (Tonelli 1924), credited him the priority for the first time.
Severini, C. (1910), "Sulle successioni di funzioni ortogonali" [On sequences of orthogonal functions], Atti dell'Accademia Gioenia, serie 5a (in Italian), 3 (5): Memoria XIII, 1−7, JFM41.0475.04. Published by the Accademia Gioenia in Catania.
Sierpiński, W. (1928), "Remarque sur le théorème de M. Egoroff" [Remarks on Egorov's theorem], Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie (in French), 21: 84–87, JFM57.1391.03.
Cafiero, Federico (1959), Misura e integrazione [Measure and integration], Monografie matematiche del Consiglio Nazionale delle Ricerche (in Italian), vol. 5, Roma: Edizioni Cremonese, pp. VII+451, MR0215954, Zbl0171.01503. A definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.