As such, if all open sets in X are σ-compact then is a Radon measure.[2]
One approach to measure theory is to start with a Radon measure, defined as a positive linear functional on Cc(X). This is the way adopted by Bourbaki; it does of course assume that X starts life as a topological space, rather than simply as a set. For locally compact spaces an integration theory is then recovered.
Without the condition of regularity the Borel measure need not be unique. For example, let X be the set of ordinals at most equal to the first uncountable ordinalΩ, with the topology generated by "open intervals". The linear functional taking a continuous function to its value at Ω corresponds to the regular Borel measure with a point mass at Ω. However it also corresponds to the (non-regular) Borel measure that assigns measure 1 to any Borel set if there is closed and unbounded set with , and assigns measure 0 to other Borel sets. (In particular the singleton gets measure 0, contrary to the point mass measure.)
The representation theorem for the continuous dual of C0(X)
Theorem Let X be a locally compact Hausdorff space. For any continuous linear functional on C0(X), there is a unique complex-valued regular Borel measure on X such that
A complex-valued Borel measure is called regular if the positive measure satisfies the regularity conditions defined above. The norm of as a linear functional is the total variation of , that is
Finally, is positive if and only if the measure is positive.
One can deduce this statement about linear functionals from the statement about positive linear functionals by first showing that a bounded linear functional can be written as a finite linear combination of positive ones.
Historical remark
In its original form by Frigyes Riesz (1909) the theorem states that every continuous linear functional A over the space C([0, 1]) of continuous functions f in the interval [0, 1] can be represented as
where α(x) is a function of bounded variation on the interval [0, 1], and the integral is a Riemann–Stieltjes integral. Since there is a one-to-one correspondence between Borel regular measures in the interval and functions of bounded variation (that assigns to each function of bounded variation the corresponding Lebesgue–Stieltjes measure, and the integral with respect to the Lebesgue–Stieltjes measure agrees with the Riemann–Stieltjes integral for continuous functions), the above stated theorem generalizes the original statement of F. Riesz.[3]
Fréchet, M. (1907). "Sur les ensembles de fonctions et les opérations linéaires". C. R. Acad. Sci. Paris. 144: 1414–1416.
Gray, J. D. (1984). "The shaping of the Riesz representation theorem: A chapter in the history of analysis". Archive for History of Exact Sciences. 31 (2): 127–187. doi:10.1007/BF00348293.
Kakutani, Shizuo (1941). "Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions.)". Ann. of Math. Series 2. 42 (4): 994–1024. doi:10.2307/1968778. hdl:10338.dmlcz/100940. JSTOR1968778. MR0005778.
Markov, A. (1938). "On mean values and exterior densities". Rec. Math. Moscou. N.S. 4: 165–190. Zbl0020.10804.
Riesz, F. (1907). "Sur une espèce de géométrie analytique des systèmes de fonctions sommables". C. R. Acad. Sci. Paris. 144: 1409–1411.
Riesz, F. (1909). "Sur les opérations fonctionnelles linéaires". C. R. Acad. Sci. Paris. 149: 974–977.
Halmos, P. (1950). Measure Theory. D. van Nostrand and Co.